Gaskell, P.H., Savage, M.D. and Wilson, M. (1997) Stokes flow in a half-filled annulus between rotating coaxial cylinders. Journal of Fluid Mechanics, 337. pp. 263-282. ISSN 1469-7645
Abstract
A model is presented for viscous flow in a cylindrical cavity (a half-filled annulus lying between horizontal, infinitely long concentric cylinders of radii R-i,R-0 rotating with peripheral speeds U-i,U-0). Stokes' approximation is used to formulate a boundary value problem which is solved for the streamfunction, phi, as a function of radius ratio (R) over bar = R-i/R-0 and speed ratio S = U-i/U-0.
Results show that for S > 0 (S < 0) the flow domain consists of two (one) large eddies (eddy), each having a stagnation point on the centreline and a potentially rich substructure with separatrices and sub-eddies. The behaviour of the streamfunction solution in the neighbourhood of stagnation points on the centreline is investigated by means of a truncated Taylor expansion. As (R) over bar and S are varied it is shown that a bifurcation in the flow structure arises in which a centre becomes a saddle stagnation point and vice versa. As (R) over bar --> 1, a sequence of 'flow bifurcations' leads to a flow structure consisting of a set of nested separatrices, and provides the means by which the two-dimensional cavity flow approaches quasi-unidirectional flow in the small gap limit. Control-space diagrams reveal that speed ratio has little effect on the flow structure when S < 0 and also when S > 0 and aspect ratios are small (except near S = 1). For S > 0 and moderate to large aspect ratios the bifurcation characteristics of the two large eddies are quite different and depend on both (R) over bar and S.
CORE (COnnecting REpositories)
CORE (COnnecting REpositories)