Hevia Fajardo, M.A. orcid.org/0000-0003-3529-0434 and Sudholt, D. orcid.org/0000-0001-6020-1646
(2023)
Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter.
Algorithmica, 86 (2).
pp. 526-565.
ISSN 0178-4617
Abstract
Evolutionary algorithms (EAs) are general-purpose optimisers that come with several parameters like the sizes of parent and offspring populations or the mutation rate. It is well known that the performance of EAs may depend drastically on these parameters. Recent theoretical studies have shown that self-adjusting parameter control mechanisms that tune parameters during the algorithm run can provably outperform the best static parameters in EAs on discrete problems. However, the majority of these studies concerned elitist EAs and we do not have a clear answer on whether the same mechanisms can be applied for non-elitist EAs. We study one of the best-known parameter control mechanisms, the one-fifth success rule, to control the offspring population size λ in the non-elitist (1, λ) EA. It is known that the (1, λ) EA has a sharp threshold with respect to the choice of λ where the expected runtime on the benchmark function OneMax changes from polynomial to exponential time. Hence, it is not clear whether parameter control mechanisms are able to find and maintain suitable values of λ. For OneMax we show that the answer crucially depends on the success rate s (i. e. a one-(s + 1)-th success rule). We prove that, if the success rate is appropriately small, the self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations and O(n log n) expected evaluations, the best possible runtime for any unary unbiased black-box algorithm. A small success rate is crucial: we also show that if the success rate is too large, the algorithm has an exponential runtime on OneMax and other functions with similar characteristics.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Evolutionary algorithms; Parameter control; Theory; Runtime analysis; Non-elitism |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 29 Jan 2024 15:48 |
Last Modified: | 29 Jan 2024 15:48 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s00453-023-01153-9 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:208398 |