
This is a repository copy of Self-adjusting population sizes for non-elitist evolutionary 
algorithms: why success rates matter.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/208398/

Version: Published Version

Article:

Hevia Fajardo, M.A. orcid.org/0000-0003-3529-0434 and Sudholt, D. orcid.org/0000-0001-
6020-1646 (2023) Self-adjusting population sizes for non-elitist evolutionary algorithms: 
why success rates matter. Algorithmica, 86 (2). pp. 526-565. ISSN 0178-4617 

https://doi.org/10.1007/s00453-023-01153-9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Algorithmica (2024) 86:526–565

https://doi.org/10.1007/s00453-023-01153-9

Self-adjusting Population Sizes for Non-elitist Evolutionary
Algorithms: Why Success Rates Matter

Mario Alejandro Hevia Fajardo1 · Dirk Sudholt2

Received: 10 November 2021 / Accepted: 27 June 2023 / Published online: 24 July 2023

© The Author(s) 2023

Abstract

Evolutionary algorithms (EAs) are general-purpose optimisers that come with several

parameters like the sizes of parent and offspring populations or the mutation rate. It is

well known that the performance of EAs may depend drastically on these parameters.

Recent theoretical studies have shown that self-adjusting parameter control mecha-

nisms that tune parameters during the algorithm run can provably outperform the best

static parameters in EAs on discrete problems. However, the majority of these studies

concerned elitist EAs and we do not have a clear answer on whether the same mecha-

nisms can be applied for non-elitist EAs. We study one of the best-known parameter

control mechanisms, the one-fifth success rule, to control the offspring population

size λ in the non-elitist (1, λ) EA. It is known that the (1, λ) EA has a sharp threshold

with respect to the choice of λ where the expected runtime on the benchmark func-

tion OneMax changes from polynomial to exponential time. Hence, it is not clear

whether parameter control mechanisms are able to find and maintain suitable values

of λ. For OneMax we show that the answer crucially depends on the success rate s

(i. e. a one-(s + 1)-th success rule). We prove that, if the success rate is appropriately

small, the self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations

and O(n log n) expected evaluations, the best possible runtime for any unary unbiased

black-box algorithm. A small success rate is crucial: we also show that if the success

rate is too large, the algorithm has an exponential runtime on OneMax and other

functions with similar characteristics.

Keywords Evolutionary algorithms · Parameter control · Theory · Runtime analysis ·
Non-elitism

B Dirk Sudholt

dirk.sudholt@uni-passau.de

1 University of Sheffield, Sheffield, UK

2 University of Passau, Passau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01153-9&domain=pdf
https://orcid.org/0000-0003-3529-0434
http://orcid.org/0000-0001-6020-1646


Algorithmica (2024) 86:526–565 527

1 Introduction

Evolutionary algorithms (EAs) are general-purpose randomised search heuristics

inspired by biological evolution that have been successfully applied to solve a wide

range of optimisation problems. The main idea is to maintain a population (multiset) of

candidate solutions (also called search points or individuals) and to create new search

points (called offspring), from applying genetic operators such as mutation (making

small changes to a parent search point) and/or recombination (combining features of

two or more parents). A process of selection is then applied to form the next genera-

tion’s population. This process is iterated over many generations in the hope that the

search space is explored and high-fitness search points emerge.

Thanks to their generality, evolutionary algorithms are especially helpful when

the problem in hand is not well-known or when the underlying fitness landscape can

only be queried through fitness function evaluations (black-box optimisation) [1].

Frequently in real-world applications the fitness function evaluations are costly, there-

fore there is a large interest in reducing the number of fitness function evaluations

needed to optimise a function, also called optimisation time or runtime [2–5].

EAs come with a range of parameters, such as the size of the parent population, the

size of the offspring population or the mutation rate. It is well known that the optimisa-

tion time of an evolutionary algorithm may depend drastically and often unpredictably

on their parameters and the problem in hand [6, 7]. Hence, parameter selection is an

important and growing field of study.

One approach for parameter selection is to theoretically analyse the optimisation

time (runtime analysis) of evolutionary algorithms to understand how different param-

eter settings affect their performance on different parameter landscapes. This approach

has given us a better understanding of how to properly set the parameters of evolu-

tionary algorithms. In addition, owing to runtime analysis we also know that during

the optimisation process the optimal parameter values may change, making any static

parameter choice have sub-optimal performance [7]. Therefore, it is natural to also

analyse parameter settings that are able to change throughout the run. These mecha-

nisms are called parameter control mechanisms.

Parameter control mechanisms aim to identify parameter values that are optimal for

the current state of the optimisation process. In continuous optimisation, parameter

control is indispensable to ensure convergence to the optimum, therefore, non-static

parameter choices have been standard for several decades. In sharp contrast to this,

in the discrete domain parameter control has only become more common in recent

years. This is in part owing to theoretical studies demonstrating that fitness-dependent

parameter control mechanisms can provably outperform the best static parameter set-

tings [8–11]. Despite the proven advantages, fitness-dependent mechanisms have an

important drawback: to have an optimal performance they generally need to be tailored

to a specific problem, which needs a substantial knowledge of the problem in hand [7].

To overcome this constraint, several parameter control mechanisms have been pro-

posed that update the parameters in a self-adjusting manner. The idea is to adapt

parameters based on information gathered during the run, for instance whether a

generation has led to an improvement in the best fitness (called a success) or not.

Theoretical studies have proven that in spite of their simplicity, these mechanisms are
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able to use good parameter values throughout the optimisation, obtaining the same or

better performance than any static parameter choice.

There is a growing body of research in this rapidly emerging area. Lässig and

Sudholt [12] presented self-adjusting schemes for choosing the offspring population

size in (1+λ) EAs and the number of islands in an island model. Mambrini and Sudholt

[13] adapted the migration interval in island models and showed that adaptation can

reduce the communication effort beyond the best possible fixed parameter. Doerr and

Doerr [14] proposed a self-adjusting mechanism in the (1 + (λ, λ)) GA based on

the one-fifth rule and proved that it optimises the well known benchmark function

OneMax (x) =
∑n

i=1 xi (counting the number of ones in a bit string x ∈ {0, 1}n

of length n) in O(n) expected evaluations, being the fastest known unbiased genetic

algorithm on OneMax. Hevia Fajardo and Sudholt [15] studied modifications to the

self-adjusting mechanism in the (1 + (λ, λ)) GA on Jump functions, showing that they

can perform nearly as well as the (1 + 1) EA with the optimal mutation rate. Doerr

et al. [16] presented a success-based choice of the mutation strength for a randomised

local search (RLS) variant, proving that it is very efficient for a generalisation of the

OneMax problem to a larger alphabet than {0, 1}. Doerr, Gießen, Witt, and Yang [17]

showed that a success-based parameter control mechanism is able to identify and track

the optimal mutation rate in the (1+λ) EA on OneMax, matching the performance of

the best known fitness-dependent parameter [8]. Doerr and Doerr give a comprehensive

survey of theoretical results [7].

Most theoretical analyses of parameter control mechanisms focus on so-called

elitist EAs that always reject worsening moves (with notable exceptions that study

self-adaptive mutation rates in the (1, λ) EA [18] and the (μ, λ) EA [19], and hyper-

heuristics that choose between elitist and non-elitist selection mechanisms [20]). The

performance of parameter control mechanisms in non-elitist algorithms is not well

understood, despite the fact that non-elitist EAs are often better at escaping from local

optima [21] and are often applied in practice. There are many applications of non-

elitist evolutionary algorithms for which an improved theoretical understanding of

parameter control mechanisms could bring performance improvements matching or

exceeding the ones seen for elitist algorithms.

We consider the (1, λ) EA on OneMax that in every generation creates λ offspring

and selects the best one for survival. Rowe and Sudholt [22] have shown that there

is a sharp threshold at λ = log e
e−1

n between exponential and polynomial runtimes

on OneMax. A value λ ≥ log e
e−1

n ensures that the offspring population size is

sufficiently large to ensure a positive drift (expected progress) towards the optimum

even on the most challenging fitness levels. For easier fitness levels, smaller values of

λ are sufficient.

This is a challenging scenario for self-adjusting the offspring population size λ since

too small values of λ can easily make the algorithm decrease its current fitness, moving

away from the optimum. For static values of λ ≤ (1 − ε) log e
e−1

n, for any constant

ε > 0, we know that the optimisation time is exponential with high probability [22].

Moreover, too large values for λ can waste function evaluations and blow up the

optimisation time.

123



Algorithmica (2024) 86:526–565 529

We consider a self-adjusting version of the (1, λ) EA that uses a success-based

rule. Following the naming convention from [7] the algorithm is called self-adjusting

(1, {F1/sλ, λ/F}) EA (self-adjusting (1, λ) EA). For an update strength F and a

success rate s, in a generation where no improvement in fitness is found, λ is increased

by a factor of F1/s and in a successful generation, λ is divided by a factor F . If one

out of s + 1 generations is successful, the value of λ is maintained. The case s = 4 is

the famous one-fifth success rule [23, 24].

We ask whether the self-adjusting (1, λ) EA is able to find and maintain suitable

parameter values of λ throughout the run, despite the lack of elitism and without

knowledge of the problem in hand.

We answer this question in the affirmative if the success rate s is chosen correctly. We

show in Sect. 3 that, if s is a constant with 0 < s < 1, then the self-adjusting (1, λ) EA

optimises OneMax in O(n) expected generations and O(n log n) expected fitness

evaluations. The bound on evaluations is optimal for all unary unbiased black-box

algorithms [11, 25]. However, if s is a sufficiently large constant, s ≥ 18, the runtime

on OneMax becomes exponential with overwhelming probability (see Sect. 4). The

reason is that then unsuccessful generations increase λ only slowly, whereas successful

generations decreaseλ significantly. This effect is more pronounced during early stages

of a run when the current search point is still far away from the optimum and successful

generations are common. We show that then the algorithm gets stuck in a non-stable

equilibrium with small λ-values and frequent fallbacks (fitness decreases) at a linear

Hamming distance to the optimum. This effect is not limited to OneMax; we show

that this negative result easily translates to other functions for which it is easy to find

improvements during early stages of a run.

To bound the expected number of generations for small success rates on OneMax,

we apply drift analysis to a potential function that trades off increases in fitness against a

penalty term for small λ-values. In generations where the fitness decreases, λ increases

and the penalty is reduced, allowing us to show a positive drift in the potential for all

fitness levels and all λ.

In Sect. 3.2 we use the potential to bound the expected number of evaluations to

increase the best-so-far fitness by log n, reaching a new fitness value denoted by b. The

time until this happens is called an epoch. During an epoch, the number of evaluations

is bounded by arguing that λ is unlikely to increase much beyond a threshold value

of O(1/p+
b−1,1), where p+

b−1,1 is the worst-case improvement probability as long as

no fitness of at least b is reached. Since at the start of an epoch the initial value of λ

is not known, we provide a tail bound showing that λ is unlikely to attain excessively

large values and hence any unknown values of λ contribute to a total of O(n log n)

expected evaluations.

In Sect. 5 we complement our runtime analyses with experiments on OneMax. First

we compare the runtime of the self-adjusting (1, λ) EA, the self-adjusting (1 + λ) EA

and the (1, λ) EA with the best known fixed λ for different problem sizes. Second, we

show a sharp threshold for the success rate at s ≈ 3.4 where the runtime changes from

polynomial to exponential. This indicates that the widely used one-fifth rule (s = 4) is

inefficient here, but other success rules achieve optimal asymptotic runtime. Finally,

we show how different values of s affect fixed target running times, the growth of λ
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over time and the time spent in each fitness value, shedding light on the non-optimal

equilibrium states in the self-adjusting (1, λ) EA.

An extended abstract containing preliminary versions of our results appeared in

[26]. The results in this manuscript have evolved significantly from there. In [26]

we bounded the expected number of evaluations by showing that, when the fitness

distance to the optimum has decreased below n/ log3 n, the self-adjusting (1, λ) EA

behaves similarly to its elitist version, a (1+{F1/sλ, λ/F}) EA. The expected number

of evaluations to reach this fitness distance was estimated using Wald’s equation, and a

reviewer of this manuscript pointed out a mistake in the application of Wald’s equation

in [26] as the assumption of independent random variables was not met. We found

a different argument to fix the proof and noticed that the new argument simplifies

the analysis considerably. In particular, the simplified proof is no longer based on the

elitist (1+{F1/sλ, λ/F}) EA. (We remark that, independently, the analysis from [26]

was also simplified in [27, 28] and extended to the class of monotone functions.)

Other changes include rewriting our results in order to refine the presentation and

give a more unified analysis for both our positive and negative results. In particular,

the conditions on s have been relaxed from s < e−1
e

vs. s ≥ 22 towards s < 1 vs.

s ≥ 18. We also extended our negative results towards other fitness function classes

Jumpk , Cliffd , ZeroMax, TwoMax and Ridge (Theorem 4.4).

2 Preliminaries

We study the expected number of generations and fitness evaluations of the self-

adjusting (1, λ) EA with self-adjusted offspring population size λ to find the optimum

of the n-dimensional pseudo-Boolean function OneMax(x) = OM(x) :=
∑n

i=1 x (i).

We define X0, X1, . . . as the sequence of states of the algorithm, where X t = (xt , λt )

describes the current search point xt and the offspring population size λt at generation t .

We often omit the subscripts t when the context is obvious.

Using the naming convention from [7] we call the algorithm self-adjusting

(1, {F1/sλ, λ/F}) EA (Algorithm 1). The algorithm behaves as the conventional

(1, λ) EA: each generation it creates λ offspring by flipping each bit independently

with probability 1/n from the parent and selecting the fittest offspring as a parent for

the next generation. In addition, in every generation it adjusts the offspring population

size depending on the success of the generation. If the fittest offspring y is better than

the parent x , the offspring population size is divided by the update strength F > 1,

and multiplied by F1/s otherwise, with s > 0 being the success rate.

The idea of the parameter control mechanism is based on the interpretation of the

one-fifth success rule from [24]. The parameter λ remains constant if the algorithm

has a success every s + 1 generations as then its new value is λ · (F1/s)s · 1/F = λ.

In pseudo-Boolean optimisation, the one-fifth success rule was first implemented by

Doerr et al. [10], and proved to track the optimal offspring population size on the

(1 + (λ, λ)) GA in [14]. Our implementation is closer to the one used in [29], where

the authors generalise the success rule, implementing the success rate s as a hyper-

parameter.
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Note that we regard λ to be a real value, so that changes by factors of 1/F or

F1/s happen on a continuous scale. Following Doerr and Doerr [14], we assume that,

whenever an integer value of λ is required, λ is rounded to a nearest integer. For the

sake of readability, we often write λ as a real value even when an integer is required.

Where appropriate, we use the notation ⌊λ⌉ to denote the integer nearest to λ (that is,

rounding up if the fractional value is at least 0.5 and rounding down otherwise).

Algorithm 1 Self-adjusting (1, {F1/sλ, λ/F}) EA.

Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.) and λ := 1

Optimization: for t ∈ {1, 2, . . . } do

Mutation: for i ∈ {1, . . . , λ} do

Create y′
i
∈ {0, 1}n by copying x and flipping each bit independently with probability 1/n.

Selection: Choose y ∈ {y′
1, . . . , y′

λ
} with f (y) = max{ f (y′

1), . . . , f (y′
λ
)} u.a.r.

Update:

if f (y) > f (x) then x ← y; λ ← max{1, λ/F} else x ← y; λ ← F1/sλ

2.1 Notation and Probability Estimates

We now give notation and tools for all (1, λ) EA algorithms.

Definition 2.1 For all λ ∈ N and 0 ≤ i < n we define:

p−
i,λ = Pr (OM(xt+1) < i | OM(xt ) = i)

p0
i,λ = Pr (OM(xt+1) = i | OM(xt ) = i)

p+
i,λ = Pr (OM(xt+1) > i | OM(xt ) = i)

�−
i,λ = E (i − OM(xt+1) | OM(xt ) = i and OM(xt+1) < i)

�+
i,λ = E (OM(xt+1) − i | OM(xt ) = i and OM(xt+1) > i)

As in [22], we call �+
i,λ forward drift and �−

i,λ backward drift and note that they

are both at least 1 by definition. We call the event underlying the probability p−
i,λ a

fallback, that is, the event that all offspring have lower fitness than the parent and

thus OM(xt+1) < OM(xt ). The probability of a fallback, is p−
i,λ = (p−

i,1)
λ since all

offspring must have worse fitness than their parent. Now, p+
i,1 is the probability of one

offspring finding a better fitness value and p+
i,λ = 1 − (1 − p+

i,1)
λ since it is sufficient

that one offspring improves the fitness. Along with common bounds and standard

arguments, we obtain the following lemma.

Lemma 2.2 For any (1, λ) EA on OneMax, the quantities from Definition 2.1 are

bounded as follows.

1 −
en

en + λ(n − i)
≤ 1 −

(

1 −
n − i

en

)λ

≤ p+
i,λ (1)
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p+
i,λ ≤ 1 −

(

1 − 1.14

(
n − i

n

) (

1 −
1

n

)n−1
)λ

≤ 1 −
(

1 −
n − i

n

)λ

(2)

If 0.84n ≤ i ≤ 0.85n and n ≥ 163, then p+
i,1 ≤ 0.069.

(
i

n
−

1

e

)λ

≤ p−
i,λ ≤

(

1 −
n − i

en
−

(

1 −
1

n

)n)λ

≤
(

e − 1

e

)λ

(3)

1 ≤ �−
i,λ ≤

e

e − 1
(4)

1 ≤ �+
i,λ ≤

∞
∑

j=1

(

1 −
(

1 −
1

j !

)λ
)

(5)

If λ ≥ 5, then �+
i,λ ≤ ⌈log λ⌉ + 0.413.

Proof We start by bounding the probability of one offspring being better than the

parent x . For the lower bound a sufficient condition for the offspring to be better than

the parent is that only one 0-bit is flipped. Therefore,

p+
i,1 ≥

n − i

n

(

1 −
1

n

)n−1

≥
n − i

en
. (6)

Along with p+
i,λ = 1 − (1 − p+

i,1)
λ, this proves one of the lower bounds in Eq. (1)

in Lemma 2.2. Additionally, using (1 + x)r ≤ 1
1−r x

for all x ∈ [−1, 0] and r ∈ N

p+
i,λ ≥ 1 −

(

1 −
n − i

en

)λ

≥ 1 −
1

1 + λ(n−i)
en

= 1 −
en

en + λ(n − i)
.

For the upper bound a necessary condition for the offspring to be better than the

parent is that at least one 0-bit is flipped, hence

p+
i,1 ≤

n − i

n
.

Additionally, we use the following upper bound shown in [30]:

p+
i,1 ≤ min

{

1.14

(
n − i

n

)(

1 −
1

n

)n−1

, 1

}

.

Since 1.14
(

n−i
n

) (

1 − 1
n

)n−1 ≤ 1 for all problem sizes n > 1 and n = 1 is trivially

solved we omit the minimum from now on.

Along with p+
i,λ = 1 − (1 − p+

i,1)
λ, this proves the upper bounds in Eq. (2) in

Lemma 2.2.
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The additional upper bound for p+
i,1 when 0.84n ≤ i ≤ 0.85n uses a more precise

bound from [31] of:

p+
i,1 ≤

(

1 −
1

n

)n−2 ∞
∑

a=0

∞
∑

b=a+1

(
i

n

)a (
n − i

n

)b
1

a!b!

≤
1

e

(

1 −
1

n

)−2 ∞
∑

a=0

∞
∑

b=a+1

(0.85)a (0.16)b 1

a!b!

≤
(

1 −
1

n

)−2

0.068152.

This implies that, for every n ≥ 163 and 0.84n ≤ i ≤ 0.85n, p+
i,1 ≤ 0.069.

We now calculate p−
i,1. For the upper bound we use

p−
i,1 = 1 − p+

i,1 − p0
i,1.

Using Eq. (6) and bounding p0
i,1 from below by the probability of no bit flipping, that

is,

p0
i,1 ≥

(

1 −
1

n

)n

,

we get

p−
i,1 ≤ 1 −

n − i

en
−

(

1 −
1

n

)n

. (7)

Finally, for the lower bound we note that for an offspring to have less fitness than

the parent it is sufficient that one of the i 1-bits and none of the 0-bits is flipped.

Therefore,

p−
i,1 ≥

(

1 −
(

1 −
1

n

)i
)

(

1 −
1

n

)n−i

=
(

1 −
1

n

)n−i

−
(

1 −
1

n

)n

≥ 1 −
n − i

n
−

1

e
=

i

n
−

1

e
. (8)

Using p−
i,λ = (p−

i,1)
λ with Eqs. (7) and (8) we obtain

(
i

n
−

1

e

)λ

≤ p−
i,λ ≤

(

1 −
n − i

en
−

(

1 −
1

n

)n)λ

.
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The upper bound is simplified as follows:

p−
i,λ ≤

(

1 −
n − i

en
−

(

1 −
1

n

)n)λ

≤
(

1 −
1

en
−

(

1 −
1

n

)n)λ

≤
(

1 −
1

en
−

1

e

(

1 −
1

n

))λ

=
(

1 −
1

e

)λ

=
(

e − 1

e

)λ

.

To prove the bounds on the backward drift from Eq. (4), note that the drift is

conditional on a decrease in fitness, hence the lower bound of 1 is trivial.

The backward drift of a generation with λ offspring can be upper bounded by a

generation with only one offspring.

We pessimistically bound the backward drift by the expected number of flipping

bits in a standard bit mutation. Under this pessimistic assumption, the condition

OM(xt+1) < i is equivalent to at least one bit flipping. Let B denote the random

number of flipping bits in a standard bit mutation with mutation probability 1/n, then

E (B) = 1, Pr (B ≥ 1) = 1 − (1 − 1/n)n ≥ 1 − 1/e = (e − 1)/e and

�−
i,λ ≤ E (B | B ≥ 1) =

∞
∑

x=1

Pr (B = x | B ≥ 1) · x

=
∞
∑

x=1

Pr (B = x)

Pr (B ≥ 1)
· x =

E (B)

Pr (B ≥ 1)
≤

e

e − 1
.

The lower bound on the forward drift, Eq. (5), is again trivial since the forward drift

is conditional on an increase in fitness.

To find the upper bound of �+
i,λ we pessimistically assume that all bit flips improve

the fitness. Then we use the expected number of bit flips to bound �+
i,λ. Let B again

denote the random number of flipping bits in a standard bit mutation with mutation

probability 1/n, then

Pr (B ≥ j) =
(

n

j

)(
1

n

) j

≤
1

j !
. (9)

To bound �+
i,λ we use the probability that any of the λ offspring flip at least j bits.

Let Mλ denote the maximum of the number of bits flipped in λ independent standard

bit mutations, then we have Pr (Mλ ≥ j) = 1 − (1 − Pr (B ≥ j))λ and

�+
i,λ ≤ E (Mλ) ≤

∞
∑

j=1

Pr (Mλ ≥ j) ≤
∞
∑

j=1

(

1 −
(

1 −
1

j !

)λ
)

.
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For λ ≥ 5 we bound the first ⌈log λ⌉ summands by 1 and apply Bernoulli’s inequality:

�+
i,λ ≤ ⌈log λ⌉ +

∞
∑

j=⌈log λ⌉+1

(

1 −
(

1 −
1

j !

)λ
)

≤ ⌈log λ⌉ + λ

∞
∑

j=⌈log λ⌉+1

1

j !

≤ ⌈log λ⌉ + 2⌈log λ⌉
∞
∑

j=⌈log λ⌉+1

1

j !
.

The function f : N → R with f (x):=2x
∑∞

j=x+1
1
j ! is decreasing with x and thus for

all λ ≥ 5 we get �+
i,λ ≤ ⌈log λ⌉ + f (3) = ⌈log λ⌉ + 8

3
(3e − 8) < ⌈log λ⌉ + 0.413. ⊓⊔

We now show the following lemma that establishes a natural limit to the value of λ.

Lemma 2.3 Consider the self-adjusting (1, λ) EA on any unimodal function with an

initial offspring population size of λ0 ≤ eF1/sn3. The probability that, during a run,

the offspring population size exceeds eF1/sn3 before the optimum is found is at most

exp(−�(n2)).

Proof In order to have λt+1 ≥ eF1/sn3, a generation with λt ≥ en3 must be unsuc-

cessful. Since there is always a one-bit flip that improves the fitness and the probability

that an offspring flips only one bit is 1
n

(

1 − 1
n

)n−1 ≥ 1
en

, then the probability of an

unsuccessful generation with λ ≥ en3 is at most

(

1 −
1

en

)en3

≤ exp(−n2).

The probability of finding the optimum in one generation with any λ and any

current fitness is at least n−n = exp(−n ln n). Hence the probability of exceeding

λ = eF1/sn3 before finding the optimum is at most

exp(−n2)

exp(−n ln n) + exp(−n2)
≤

exp(−n2)

exp(−n ln n)
= exp(−�(n2)).

⊓⊔

2.2 Drift Analysis and Potential Functions

Drift analysis is one of the most useful tools to analyse evolutionary algorithms [32].

A general approach for the use of drift analysis is to identify a potential function that

adequately captures the progress of the algorithm and the distance from a desired target

state (e. g. having found a global optimum). Then we analyse the expected changes

in the potential function at every step of the optimisation (drift of the potential) and
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finally translate this knowledge about the drift into information about the runtime of

the algorithm.

Several powerful drift theorems have been developed throughout the years that help

with the last step of the above approach, requiring as little information as possible

about the potential and its drift. Hence, this step is relatively straightforward. For

convenience, we state the drift theorems used in our work.

Theorem 2.4 (Additive Drift [33]) Let (X t )t≥0 be a sequence of non-negative random

variables over a finite state space S ⊆ R. Let T be the random variable that denotes

the earliest point in time t ≥ 0 such that X t = 0. If there exists c > 0 such that, for

all t < T ,

E (X t − X t+1 | X t ) ≥ c,

then

E (T | X0) ≤
X0

c
.

The following two theorems both deal with the case that the drift is pointing away

from the target, that is, the expected progress is negative in an interval of the state

space.

Theorem 2.5 (Negative drift theorem [34, 35]) Let X t , t ≥ 0, be real-valued random

variables describing a stochastic process over some state space. Suppose there exists

an interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on ℓ:=b−a, a

function r(ℓ) satisfying 1 ≤ r(ℓ) = o(ℓ/ log(ℓ)) such that for all t ≥ 0 the following

two conditions hold:

1. E (X t+1 − X t | X0, . . . , X t ; a < X t < b) ≥ ε.

2. Pr (|X t+1 − X t | ≥ j | X0, . . . , X t ; a < X t ) ≤ r(ℓ)

(1+δ) j for j ∈ N0.

Then there exists a constant c∗ > 0 such that for T ∗:= min{t ≥ 0 : X t < a |
X0, . . . , X t ; X0 ≥ b} it holds Pr

(

T ∗ ≤ 2c∗ℓ/r(ℓ)
)

= 2−�(ℓ/r(ℓ)).

The following theorem is a variation of Theorem 2.5 in which the second condition

on large jumps is relaxed.

Theorem 2.6 (Negative drift theorem with scaling [36]) Let X t , t > 0 be real-valued

random variables describing a stochastic process over some state space. Suppose

there exists an interval [a, b] ⊆ R and, possibly depending on ℓ := b − a, a drift

bound ε:=ε(ℓ) > 0 as well as a scaling factor r :=r(ℓ) such that for all t ≥ 0 the

following three conditions hold:

1. E (X t+1 − X t | X0, . . . , X t ; a < X t < b) ≥ ε.

2. Pr (|X t+1 − X t | ≥ jr | X0, . . . , X t ; a < X t ) ≤ e− j for j ∈ N0.

3. 1 ≤ r2 ≤ εℓ/(132 log(r/ε)).

Then for the first hitting time T ∗:= min{t ≥ 0 : X t < a | X0, . . . , X t ; X0 ≥ b} it

holds that Pr
(

T ∗ ≤ eεℓ/(132r2)
)

= O(e−εℓ/(132r2)).
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For our analysis the first step, that is, finding a good potential function is much

more interesting. A natural candidate for a potential function is the fitness of the

current individual OM(xt ). However, the self-adjusting (1, λ) EA adjusts λ throughout

the optimisation, and the expected change in fitness crucially depends on the current

value of λ. Therefore, we also need to take into account the current offspring population

size λ and capture both fitness and λ in our potential function. Since we study different

behaviours of the algorithm depending on the success rate s we generalise the potential

function used in [26] by considering an abstract function h(λt ) of the current offspring

population sizes. The function h(λt ) will be chosen differently for different contexts,

such as proving a positive result for small success rates s and proving a negative result

for large success rates.

Definition 2.7 Given a function h : R → R, we define the potential function g(X t ) as

g(X t ) = OM(xt ) + h(λt ).

We do not make any assumptions on h(λt ) at this stage, but we will choose h(λt ) in the

following sections as functions of λt that reward increases of λt , for small values of λt .

We note that this potential function is also a generalisation of the potential function

used in [31] to analyse the self-adjusting (1, λ) EA with a reset mechanism on the

Cliff function. We believe that this approach could be useful for the analysis of a

wide range of success-based parameter control mechanisms and it might be able to

simplify previous analysis such as [14, 29]. A similar approach has been used before

for analysing self-adjusting mutation rates [16, 18] and for continuous domains in

[37–39].

For every function h(λt ), we can compute the drift in the potential as shown in

the following lemma. For the sake of readability we drop the subscript t in λt where

appropriate.

Lemma 2.8 Consider the self-adjusting (1, λ) EA. Then for every function h : R →
R

+
0 and every generation t with OM(xt ) < n and λt > F, E (g(X t+1) − g(X t ) | X t )

is

(

�+
i,λ + h(λ/F) − h(λF1/s)

)

p+
i,λ + h(λF1/s) − h(λ) − �−

i,λ p−
i,λ.

If λt ≤ F then, E (g(X t+1) − g(X t ) | X t ) is

(

�+
i,λ + h(1) − h(λF1/s)

)

p+
i,λ + h(λF1/s) − h(λ) − �−

i,λ p−
i,λ.

Proof When an improvement is found, the fitness increases in expectation by �+
i,λ

and since λt+1 = λ/F , the λ term changes by h(λ/F) − h(λ). When the fitness

does not change, the λ term changes by h(λF1/s) − h(λ). When the fitness decreases

the expected decrease is �−
i,λ and the λ term changes by h(λF1/s) − h(λ). Together

E (g(X t+1) − g(X t ) | X t ) is
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(

�+
i,λ + h(λ/F) − h(λ)

)

p+
i,λ +

(

h(λF1/s) − h(λ)

)

p0
i,λ

+
(

h(λF1/s) − h(λ) − �−
i,λ

)

p−
i,λ

=
(

�+
i,λ + h(λ/F) − h(λ)

)

p+
i,λ +

(

h(λF1/s) − h(λ)

)

(p0
i,λ + p−

i,λ) − �−
i,λ p−

i,λ

=
(

�+
i,λ + h(λ/F) − h(λ)

)

p+
i,λ +

(

h(λF1/s) − h(λ)

)

(1 − p+
i,λ) − �−

i,λ p−
i,λ

=
(

�+
i,λ + h(λ/F) − h(λF1/s)

)

p+
i,λ + h(λF1/s) − h(λ) − �−

i,λ p−
i,λ

Given that λ ≥ 1 if λ ≤ F then h(λ/F) needs to be replaced by h(λ/λ) = h(1). ⊓⊔

3 Small Success Rates are Efficient

Now we consider the non-elitist self-adjusting (1, λ) EA and show that, for suit-

able choices of the success rate s and constant update strength F , the self-adjusting

(1, λ) EA optimises OneMax in O(n) expected generations and O(n log n) expected

evaluations.

3.1 Bounding the Number of Generations

We first only focus on the expected number of generations as the number of function

evaluations depends on the dynamics of the offspring population size over time and is

considerably harder to analyse. The following theorem states the main result of this

section.

Theorem 3.1 Let the update strength F > 1 and the success rate 0 < s < 1 be

constants. Then for any initial search point and any initial λ the expected number of

generations of the self-adjusting (1, λ) EA on OneMax is O(n).

We note that the self-adjusting mechanism aims to obtain one success every s + 1

generations. The intuition behind using 0 < s < 1 in Theorem 3.1 is that then the

algorithm tries to succeed (improve the fitness) more than half of the generations.

In order to achieve that many successes the λ-value needs to be large, which in turn

reduces the probability (and number) of fallbacks during the run.

We make use of the potential function from Definition 2.7 and define h(λ) to obtain

the potential function used in this section as follows.

Definition 3.2 We define the potential function g1(X t ) as

g1(X t ) = OM(xt ) −
2s

s + 1
logF

(

max

(
enF1/s

λt

, 1

))

.

The definition of h(λ) in this case is used as a penalty term that grows linearly

in logF λ (since − logF

(
enF1/s

λt

)

= − logF (enF1/s) + logF (λt )). That is, when λ
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increases the penalty decreases and vice-versa. The idea behind this definition is that

small values of λ may lead to decreases in fitness, but these are compensated by an

increase in λ and a reduction of the penalty term.

Since the range of the penalty term is limited, the potential is always close to the

current fitness as shown in the following lemma.

Lemma 3.3 For all generations t , the fitness and the potential are related as follows:

OM(xt )− 2 s
s+1

logF (enF1/s) ≤ g1(X t ) ≤ OM(xt ). In particular, g1(X t ) = n implies

OM(xt ) = n.

Proof The penalty term 2 s
s+1

logF

(

max
(

enF1/s

λt
, 1

))

is a non-increasing function in λt

with its minimum being 0 for λ ≥ enF1/s and its maximum being 2 s
s+1

logF

(

enF1/s
)

when λ = 1. Hence, OM(xt ) − 2 s
s+1

logF (enF1/s) ≤ g1(X t ) ≤ OM(xt ). ⊓⊔

Now we proceed to show that with the correct choice of hyper-parameters the drift

in potential is at least a positive constant during all parts of the optimisation.

Lemma 3.4 Consider the self-adjusting (1, λ) EA as in Theorem 3.1. Then for every

generation t with OM(xt ) < n,

E (g1(X t+1) − g1(X t ) | X t ) ≥
1 − s

2e
.

for large enough n. This also holds when only considering improvements that increase

the fitness by 1.

Proof Given that h(λt ) = − 2 s
s+1

logF

(

max
(

enF1/s

λt
, 1

))

is a non-decreasing func-

tion, if λ ≤ F then h(1) ≥ h(λ/F). Hence, by Lemma 2.8, for all λ,

E (g1(X t+1) − g1(X t ) | X t ) is at least

(

�+
i,λ + h(λ/F) − h(λF1/s)

)

p+
i,λ + h(λF1/s) − h(λ) − �−

i,λ p−
i,λ. (10)

We first consider the case λt < en as then λt+1 < enF1/s and h(λt+1) =
− 2 s

s+1
(logF (enF1/s)−logF (λt+1)) < 0. Hence, E (g1(X t+1) − g1(X t ) | X t , λt < en)

is at least

(

�+
i,λ +

2s

s + 1
logF

(
λ

F

)

−
2s

s + 1
logF

(

λF1/s
)
)

p+
i,λ +

2s

s + 1
logF

(

λF1/s
)

−
2s

s + 1
logF (λ) − �−

i,λ p−
i,λ

=
(

�+
i,λ −

2s

s + 1

(
s + 1

s

))

p+
i,λ +

2s

s + 1

(
1

s

)

− �−
i,λ p−

i,λ

=
2

s + 1
+

(

�+
i,λ − 2

)

p+
i,λ − �−

i,λ p−
i,λ.
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By Lemma 2.2 �+
i,λ ≥ 1, hence E (g1(X t+1) − g1(X t ) | X t , λt < en) ≥ 2

s+1
− p+

i,λ−
�−

i,λ p−
i,λ. Using 2

s+1
= s+1+1−s

s+1
= 1 + 1−s

s+1
yields

E (g1(X t+1) − g1(X t ) | X t , λt < en) ≥ 1 +
1 − s

s + 1
− p+

i,λ − �−
i,λ p−

i,λ

By Lemma 2.2 this is at least

1 − s

s + 1
+

(

1 − 1.14

(
n − i

n

) (

1 −
1

n

)n−1
)⌊λ⌉

−
(

e

e − 1

) (

1 −
n − i

en
−

(

1 −
1

n

)n)⌊λ⌉

≥
1 − s

s + 1
+

(

1 −
1.14

e
(

1 − 1
n

)

(
n − i

n

)
)⌊λ⌉

−
(

e

e − 1

) (

1 −
n − i

en
−

1

e

(

1 −
1

n

))⌊λ⌉

=
1 − s

s + 1
+

(

1 −
1.14

e

(
n − i

n − 1

))⌊λ⌉
−

(
e

e − 1

)(
e − 1

e
−

n − i − 1

en

)⌊λ⌉
. (11)

We start taking into account only ⌊λ⌉ ≥ 2, that is, λ ≥ 1.5 and later on we will deal

with ⌊λ⌉ = 1. For ⌊λ⌉ ≥ 2, E (g1(X t+1) − g1(X t ) | X t , 1.5 ≤ λt ≤ en) is at least

1 − s

s + 1
+

(

1 −
1.14

e

(
n − i

n − 1

))⌊λ⌉
−

(
e

e − 1

)⌊λ⌉/2 (
e − 1

e
−

n − i − 1

en

)⌊λ⌉

=
1 − s

s + 1
+

(

1 −
1.14

e

(
n − i

n − 1

))

︸ ︷︷ ︸

y1

⌊λ⌉
−

(
(

e − 1

e

)1/2

−
n − i − 1

(e2 − e)1/2n

)

︸ ︷︷ ︸

y2

⌊λ⌉

Let y1 and y2 be the respective bases of the terms raised to ⌊λ⌉ as indicated

above. We will now prove that y1 ≥ y2 for all 0 ≤ i < n which implies that

E (g1(X t+1) − g1(X t ) | X t , 1.5 ≤ λt < en) ≥ 1−s
s+1

≥ 1−s
2e

, where the last inequal-

ity holds because s < 1.

The terms y1 and y2 can be described by linear equations y1 = m1(n − i) + b1

and y2 = m2(n − i) + b2 with m1 = − 1.14
e(n−1)

, b1 = 1, m2 = − 1

n
√

e2−e
and

b2 =
√

e−1
e

+ 1

n
√

e2−e
. Since m2 < m1 for all n ≥ 11, the difference y1 − y2 is

minimised for n − i = 1. When n − i = 1, then y1 = 1 − 1.14
e(n−1)

>
(

e−1
e

)1/2 = y2

for all n > 3, therefore y1 > y2 for all 0 ≤ i < n.

When ⌊λ⌉ = 1, from Eq. (11) E (g1(X t+1) − g1(X t ) | X t , λt ≤ 1.5) ≥ 1−s
s+1

−
1.14

e

(
n−i
n−1

)

+ n−i−1
(e−1)n

which is monotonically decreasing for 0 < i < n − 1 when

n > e/(1.14 − 0.14e) ≈ 3.58, hence E (g1(X t+1) − g1(X t ) | X t , λt ≤ 1.5) ≥ 1−s
s+1

−
1.14

e(n−1)
which is bounded by 1−s

2e
for large enough n since s < 1.

Finally, for the case λt ≥ en, in an unsuccessful generation the penalty term is

capped, hence h(λF1/s) = 0. We note that h(λ/F) ≥ h(λ) − 2s
s+1

and h(λ) ≤ 0 for
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all λ. Then by Eq. (10), E (g1(X t+1) − g1(X t ) | X t , λt ≥ en) is at least

(

�+
i,λ + h(λ/F)

)

p+
i,λ − h(λ) − �−

i,λ p−
i,λ

≥
(

�+
i,λ + h(λ) −

2s

s + 1

)

p+
i,λ − h(λ) − �−

i,λ p−
i,λ

=
(

�+
i,λ −

2s

s + 1

)

p+
i,λ − (1 − p+

i,λ)h(λ) − �−
i,λ p−

i,λ

≥
(

�+
i,λ −

2s

s + 1

)

p+
i,λ − �−

i,λ p−
i,λ

By definition Lemma 2.2, λt ≥ en implies p+
i,λ ≥ 1 −

(

1 − 1
en

)en ≥ 1 − 1
e

and

p−
i,λ�

−
i,λ ≤

(
e−1

e

)en e
e−1

=
(

e−1
e

)en−1
. Together,

E (g1(X t+1) − g1(X t ) | X t , λt ≥ en)

≥
(

�+
i,λ −

2s

s + 1

)

p+
i,λ − �−

i,λ p−
i,λ

≥
(

1 −
1

e

)(

1 −
2s

s + 1

)

−
(

e − 1

e

)en−1

=
(

1

e
+

(

1 −
2

e

)) (

1 −
2s

s + 1

)

−
(

e − 1

e

)en−1

=
1

e

(

1 −
2s

s + 1

)

+
(

1 −
2

e

) (

1 −
2s

s + 1

)

−
(

e − 1

e

)en−1

.

The term
(

1 − 2
e

)
(

1 − 2s
s+1

)

is a positive constant, hence, for large enough n this term

is larger than
(

e−1
e

)en−1
and

E (g1(X t+1) − g1(X t ) | X t , λt > en) ≥
1

e

(

1 −
2s

s + 1

)

=
1

e

(
1 − s

s + 1

)

≥
1 − s

2e
.

Since s < 1, this is a strictly positive constant. ⊓⊔

With this constant lower bound on the drift of the potential, the proof of Theorem 3.1

is now quite straightforward.

Proof of Theorem 3.1 We bound the time to get to the optimum using the potential

function g1(X t ). Lemma 3.4 shows that the potential has a positive constant drift

whenever the optimum has not been found, and by Lemma 3.3 if g1(X t ) = n then the

optimum has been found. Therefore, we can bound the number of generations by the

time it takes for g1(X t ) to reach n.

To fit the perspective of the additive drift theorem (Theorem 2.4) we switch

to the function g1(X t ) := n − g1(X t ) and note that g1(X t ) = 0 implies that
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g1(X t ) = OM(xt ) = n. The initial value g1(X0) is at most n + 2 s
s+1

logF

(

enF1/s
)

by Lemma 3.3. Using Lemma 3.4 and the additive drift theorem, the expected number

of generations is at most

n + 2s
s+1

logF

(

enF1/s
)

1−s
2e

= O(n).

⊓⊔

3.2 Bounding the Number of Evaluations

A bound on the number of generations, by itself, is not sufficient to claim that the

self-adjusting (1, λ) EA is efficient in terms of the number of evaluations. Obviously,

the number of evaluations in generation t equals λt and this quantity is being self-

adjusted over time. So we have to study the dynamics of λt more carefully. Since λ

grows exponentially in unsuccessful generations, it could quickly attain very large

values. However, we show that this is not the case and only O(n log n) evaluations are

sufficient, in expectation.

Theorem 3.5 Let the update strength F > 1 and the success rate 0 < s < 1 be

constants. The expected number of function evaluations of the self-adjusting (1, λ) EA

on OneMax is O(n log n).

Bounding the number of evaluations is more challenging than bounding the number

of generations as we need to keep track of the offspring population size λ and how it

develops over time. Large values of λ lead to a large number of evaluations made in

one generation. Small values of λ can lead to a fallback.

In the elitist (1 + {F1/sλ, λ/F}) EA, small values of λ are not an issue since there

are no fallbacks. In our non-elitist algorithm, small values of λ can lead to decreases

in fitness, and then the same fitness level can be visited multiple times.

The reader may think that small values of λ only incur few evaluations and that the

additional cost for a fallback is easily accounted for. However, it is not that simple.

Imagine a fitness level i and a large value of λ such that a fallback is unlikely. But it

is possible for λ to decrease in a sequence of improving steps. Then we would have

a small value of λ and possibly a sequence of fitness-decreasing steps. Suppose the

fitness decreases to a value at most i , then if λ returns to a large value, we may have

visited fitness level i multiple times, with large (and costly) values of λ.

It is possible to show that, for sufficiently challenging fitness levels,λ moves towards

an equilibrium state, i. e. when λ is too small, it tends to increase. However, this is

generally not enough to exclude drops in λ. Since λ is multiplied or divided by a

constant factor in each step, a sequence of k improving steps decreases λ by a factor of

Fk , which is exponential in k. For instance, a value of λ = logO(1) n can decrease to

λ = �(1) in only O(log log n) generations. We found that standard techniques such

as the negative drift theorem, applied to logF (λt ), are not strong enough to exclude

drops in λ.
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We solve this problem as follows. We consider the best-so-far fitness f ∗
t =

max{OM(xt ′) | 0 ≤ t ′ ≤ t} at time t (as a theoretical concept, as the self-adjusting

(1, λ) EA is non-elitist and unaware of the best-so-far fitness). We then divide the

run into fitness intervals of size log n that we call blocks, and bound the time for the

best-so-far fitness to reach a better block. To this end, we reconsider the potential

function used to bound the expected number of generations in Theorem 3.1 and refine

our arguments to obtain a bound on the expected number of generations to increase

the best-so-far fitness by log n (see Lemma 3.6 below). Denoting by b the target fit-

ness of a better block, in the current block the fitness is at most b − 1. To bound the

number of evaluations, we show that the offspring population size is likely to remain

in O(1/p+
b−1,1), where p+

b−1,1 is the worst-case improvement probability for a single

offspring creation in the current block. An application of Wald’s equation bounds the

total expected number of evaluations in all generations until a new block is reached.

At the time a new block i is reached, the current offspring population size λ(i) is

not known, yet it contributes to the expected number of evaluations during the new

block. We provide tail bounds on λ(i) to show that excessively large values of λ(i)

are unlikely. This way we bound the total contribution of λ(i)’s across all blocks i by

O(n log n).

Lemma 3.6 Consider the self-adjusting (1, λ) EA as in Theorem 3.5. For every a, b ∈
{0, . . . , n}, the expected number of generations to increase the current fitness from a

value at least a to at least b > a is at most

b − a + 2s
s+1

logF

(

enF1/s
)

1−s
2e

= O(b − a + log n).

For b = a + log n, this bound is O(log n).

Proof We use the proof of Theorem 3.1 with a revised potential function of

g1
′(X t ) := max(g1(X t ) − (n − b), 0) and stopping when g1

′(X t ) = 0 (which implies

that a fitness of at least b is reached) or a fitness of at least b is reached beforehand.

Note that the maximum caps the effect of fitness improvements that jump to fitness

values larger than b. As remarked in Lemma 3.4, the drift bound for g1(X t ) still holds

when only considering fitness improvements by 1. Hence, it also holds for g1
′(X t )

and the analysis goes through as before. ⊓⊔

In our preliminary publication [26] we introduced a novel analysis tool that we

called ratchet argument. We considered the best-so-far fitness f ∗
t = max{OM(xt ′) |

0 ≤ t ′ ≤ t} at time t (as mentioned before, as a theoretical concept) and used drift

analysis to show that, with high probability, the current fitness never drops far below

f ∗
t , that is, OM(xt ) ≥ f ∗

t − r log n for a constant r > 0. We called this a ratchet

argument1: if the best-so-far fitness increases, the lower bound on the current fitness

increases as well. The lower bound thus works like a ratchet mechanism that can only

move in one direction. Our revised analysis no longer requires this argument. We still

1 This name is inspired by the term “Muller’s ratchet” from biology [40] that considers a ratchet mechanism

in asexual evolution, albeit in a different context.
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present the following lemma since (1) it might be of interest as a structural result about

the typical behaviour of the algorithm, (2) it has found applications in follow-up work

[31] of [26] and it makes sense to include it here for completeness and (3) the basic

argument may prove useful in analysing other non-elitist algorithms. In fact, a very

similar argument was used in recent work on the (1, λ) EA without self-adjustment

[41]. Lemma 3.7 also shows that with high probability the fitness does not decrease

when λ ≥ 4 log n. A proof is given in the appendix.

Lemma 3.7 Consider the self-adjusting (1, λ) EA as in Theorem 3.5. Let OM
∗
t :=

maxt ′≤t OM(xt ′) be its best-so-far fitness at generation t and let T be the first gener-

ation in which the optimum is found. Then with probability 1 − O(1/n) the following

statements hold for a large enough constant r > 0 (that may depend on s).

1. For all t ≤ T in which λt ≥ 4 log n, we have OM(xt+1) ≥ OM(xt ).

2. For all t ≤ T , the fitness is at least: OM(xt ) ≥ OM
∗
t − r log n.

In [26] we divided the optimisation in blocks of log n fitness levels and with the

help of the ratchet argument shown in Lemma 3.7 and other helper lemmas we showed

that each block is typically optimised efficiently. Adding the time spent in each block,

we obtained that the algorithm optimises OneMax in O(n log n) evaluations with

high probability. It is straightforward to derive a bound on the number of expected

evaluations of the same order.

In this revised analysis we still divide the optimisation in blocks of length log n,

but use simpler and more elegant arguments to compute the time spent in a block and

the total expected runtime. To bound the time spent optimising a block, first we divide

each block on smaller chunks called phases and bound the time spent in each phase.

This is shown in the following lemma.

Lemma 3.8 Consider the self-adjusting (1, λ) EA as in Theorem 3.5. Fix a fitness value

b and denote the current offspring population size by λ0. Define λb := C F1/s/p+
b−1,1

for a constant C > 0 that may depend on F and s that satisfies

(
s + 1

s
· e1−C

) s
s+1

≤
F−1/s

2
. (12)

Define a phase as a sequence of generations that ends in the first generation where λ

attains a value of at most λb or a fitness of at least b is reached. Then the expected

number of evaluations made in that phase is O(λ0).

We note that a constant C > 0 meeting inequality (12) exists since the left-hand side

converges to 0 when C goes to infinity, while the right-hand side remains a positive

constant. Additionally, given that F and s are constants λb = O(1/p+
b−1,1).

Proof of Lemma 3.8 If λ0 F1/s ≤ λb or if the current fitness is at least b then the phase

takes only one generation and λ0 evaluations as claimed. Hence we assume in the

following that λb F−1/s < λ0 and that the current fitness is less than b.
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We use some ideas from the proof of Theorem 9 in [14]2 that bounds the expected

number of evaluations in the self-adjusting (1+(λ,λ)) GA. Let Z denote the random

number of iterations in the phase and let T denote the random number of evaluations

in the phase. Since λt can only grow by F1/s , λi ≤ λ0 · F i/s for all i ∈ N0. If Z = z,

the number of evaluations is bounded by

E (T | Z = z) ≤ λ0 ·
z

∑

i=1

F i/s = λ0 ·
F

z+1
s − F1/s

F1/s − 1
≤ λ0 ·

F
z+1

s

F1/s − 1
.

While λt ≥ λb F−1/s and the current fitness is i < b, the probability of an improvement

is at least

1 −
(

1 − p+
i,1

)λt

≥ 1 −
(

1 − p+
b−1,1

)λb F−1/s

≥ 1 − e
−λb F−1/s ·p+

b−1,1 = 1 − e−C .

If during the first z iterations we have at most z · s
s+1

unsuccessful iterations, this

implies that at least z · 1
s+1

iterations are successful. The former steps increase logF (λ)

by 1/s each, and the latter steps decrease logF (λ) by 1 each. In total, we get λz ≤
λ0 · (F1/s)z·s/(s+1) · (1/F)Z/(s+1) = λ0 and thus λz ≤ λ0 ≤ λb. We conclude that

having at most z · s
s+1

unsuccessful iterations among the first z iterations is a sufficient

condition for ending the phase within z iterations.

We define independent random variables {Yt }t≥t∗ such that Yt ∈ {0, 1},
Pr (Yt = 0) = 1 − e−C and Pr (Yt = 1) = e−C . Denote Y :=

∑z
i=1 Yi and note

that E (Y ) = z · e−C . Using classical Chernoff bounds (see, e. g. Theorem 10.1 in

[42]),

Pr (Z = z) ≤ Pr (Z ≥ z) ≤ Pr

(

Y ≥ z ·
s

s + 1

)

= Pr

(

Y ≥ E (Y ) ·
(

s

s + 1
· eC

))

≤

⎛

⎜
⎝

e
s

s+1 ·eC −1

(
s

s+1
· eC

) s
s+1 ·eC

⎞

⎟
⎠

z·e−C

≤

⎛

⎜
⎝

e
s

s+1 ·eC

(
s

s+1
· eC

) s
s+1 ·eC

⎞

⎟
⎠

z·e−C

=

(
(

s + 1

s
· e1−C

) s
s+1

)z

.

By assumption on C this is at most (F−1/s/2)z = F−z/s · 2−z .

2 Said theorem only holds for values of F > 1 that can be chosen arbitrarily small. We generalise the proof

to work for arbitrary constant F . This requires the use of a stronger Chernoff bound.
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Putting things together,

E (T ) =
∞
∑

z=1

Pr (Z = z) · E (T | Z = z)

≤
∞
∑

z=1

F−z/s · 2−z · λ0 ·
F

z+1
s

F1/s − 1

= λ0 ·
F1/s

F1/s − 1
·

∞
∑

z=1

2−z = λ0 ·
F1/s

F1/s − 1
.

⊓⊔

We now use Lemma 3.8 and Wald’s equation to compute the expected number of

evaluations spent in a block.

Lemma 3.9 Consider the self-adjusting (1, λ) EA as in Theorem 3.5. Starting with a

fitness of a and an offspring population size of λ0, the expected number of function

evaluations until a fitness of at least b is reached for the first time is at most

E (λ0 + · · · + λt | λ0) ≤ O(λ0) + O(b − a + log n) ·
1

p+
b−1,1

.

Proof We use the variable λb and the definition of a phase from the statement of

Lemma 3.8. In the first phase, the number of evaluations is bounded by O(λ0) by

Lemma 3.8. Afterwards, we either have a fitness of at least b or a λ-value of at most λb.

In the former case we are done. In the latter case, we apply Lemma 3.8 repeatedly

until a fitness of at least b is reached. In every considered phase the expected number

of evaluations is at most O(λb) = O(1/p+
b−1,1). Note that all these applications of

Lemma 3.8 yield a bound that is irrespective of the current fitness and the current

offspring population size. Hence these upper bounds can be thought of as independent

and identically distributed random variables.

By Lemma 3.6 the expected number of generations to increase the current fitness

from a value at least a to a value at least b is O(b − a + log n). The number of

generations is clearly an upper bound for the number of phases required. The previous

discussion allows us to apply Wald’s equation to conclude that the expected number

of evaluations in all phases but the first is bounded by O(b − a + log n) · 1/p+
b−1,1.

Together, this implies the claim. ⊓⊔

We note that for b−a = log n the bound given by Lemma 3.9 depends on the initial

offspring population size λ0, the gap of fitness to traverse b − a and the probability of

finding an improvement at fitness value b − 1. If we could ensure that λ is sufficiently

small at the start of the optimisation of every block we could easily compute the total

expected optimisation. Unfortunately, the previous lemmas allow for the value of λ

at the end of a block and hence at the start of a new block to be any large value. We

solve this in Lemma 3.10 by denoting a generation where λ is excessively large as an
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excessive generation. In the proof of Lemma 3.10 we show that with high probability

the algorithm finds the optimum without having an excessive generation. Hence, the

expected number of evaluations needed for the algorithm to either find the optimum

or have an excessive generation is asymptotically the same as the runtime of the

algorithm.

Lemma 3.10 Call a generation t excessive if, for a current search point with fitness i ,

at the end of the generation λ is increased beyond 5F1/s ln(n)/p+
i,1. Let T denote

the expected number of function evaluations before a global optimum is found. Let T

denote the number of evaluations made before a global optimum is found or until the

end of the first excessive generation. Then

E (T ) ≤ E
(

T
)

+ O(1).

Proof The proof uses different thresholds for increasingly “excessive” values of λ

and we are numbering the corresponding variables for the number of evaluations and

generations, respectively. Let T (1) = T and let G(1) be the number of generations until

a global optimum or an excessive generation is encountered. We denote the former

event by B(1), that is, the event that an optimum is found before an excessive generation.

Let T (2) denote the worst-case number of function evaluations made until λ exceeds

λ(2) := F1/sn3 or the optimum is found, when starting with a worst possible initial

fitness and offspring population size λ ≤ λ(2). Let B(2) denote the latter event and

let G(2) be the corresponding number of generations. Let T (3) denote the worst-case

number of evaluations until the optimum is found, when starting with a worst possible

population size λ ≤ λ(2)F1/s . Then the expected optimisation time is bounded as

follows.

E (T ) ≤ E
(

T (1)
)

+ Pr
(

B(1)
) (

E
(

T (2)
)

+ Pr
(

B(2)
)

· E
(

T (3)
))

.

Note that T (1) ≤ T since T (1) is a stopping time defined with additional opportunities

for stopping, thus the number of generations G(1) for finding the optimum or exceeding

λ(1) satisfies E
(

G(1)
)

= O(n) by Lemma 3.6.

In every generation t ≤ G(1) with offspring population size λt and current fitness i ,

if λt ≤ 5 ln(n)/p+
i,1, we have λt+1 ≤ 5F1/s ln(n)/p+

i,1 with probability 1, that is,

the generation is not excessive. If 5 ln(n)/p+
i,1 < λt ≤ 5F1/s ln(n)/p+

i,1, we have an

excessive generation with probability at most

(1 − p+
i,1)

λt ≤ (1 − p+
i,1)

5 ln(n)/p+
i,1 ≤ e−5 ln(n) = n−5.

Thus, the probability of having an excessive generation in the first G(1) generations is

bounded, using a union bound, by

Pr
(

B(1)
)

≤
∞
∑

t=1

t · n−5 · Pr
(

G(1) = t
)

= n−5 · E
(

G(1)
)

= O(n−4).
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We also have E
(

G(2)
)

= O(n) by Lemma 3.6 (this bound applies for all initial fitness

values and all initial offspring population sizes). In all such generations t ≤ G(2), we

have λt ≤ λ(2), thus E
(

T (2)
)

≤ E
(

G(2)
)

· λ(2) = O(n4).

As per the above arguments, the probability of exceeding λ(2) is either 0 (for λt ≤
λ(2)F−1/s) or (for λ(2)F−1/s < λt ≤ λ(2)) bounded by

(1 − p+
i,1)

λt ≤ (1 − p+
n−1,1)

λ(2) F−1/s

≤ e−�(n2).

Taking a union bound,

Pr
(

B(2)
)

≤
∞
∑

t=1

t · e−�(n2) · Pr
(

G(2) = t
)

= e−�(n2) · E
(

G(2)
)

= e−�(n2).

Finally, we bound E
(

T (3)
)

≤ nn using the trivial argument that a global optimum is

created with every standard bit mutation with probability at least (1/n)n . Putting this

together yields

E (T ) ≤ E
(

T (1)
)

+ O(n−4)

(

O(n4) + e−�(n2) · nn
)

= E
(

T (1)
)

+ O(1).

⊓⊔

Owing to Lemma 3.10 we can compute E
(

T
)

without worrying about large values

of λ and at the same time obtain the desired bound on the total expected number of

evaluations to find the optimum.

Proof of Theorem 3.5 By Lemma 3.10, it suffices to bound E
(

T
)

from above. In par-

ticular, we can assume that no generations are excessive as otherwise we are done.

We divide the distance to the optimum in blocks of length log n and use this to divide

the run into epochs. For i ∈ {0, . . . , ⌈n/ log n⌉−1}, epoch i starts in the first generation

in which the current search point has a fitness of at least n−(i +1) log n is reached and

it ends as soon as a search point of fitness at least n − i log n is found. Let Ti denote the

number of evaluations made during epoch i . Note that after epoch i , once a fitness of at

least n − i log n has been reached, the algorithm will continue with epoch i − 1 (or an

epoch with an even smaller index, in the unlikely event that a whole block is skipped)

and the goal of epoch 0 implies that the global optimum is found. Consequently, the

total expected number of evaluations is bounded by
∑⌈n/ log n⌉−1

i=0 E (Ti ).

Let λ(i) denote the offspring population size at the start of epoch i . Applying

Lemma 3.9 with a := n − (i + 1) log n, b := n − i log n and λ0 := λ(i),

E (Ti ) ≤ O(λ(i)) + O(log n) ·
1

p+
n−i log(n)−1,1

.
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Since we assume that no generation is excessive and the fitness is bounded by

n − i log(n) − 1 throughout the epoch, we have λ(i) ≤ 5F1/s ln(n)/p+
n−i log(n)−1,1.

Plugging this in, we get

E (Ti ) ≤ O(log n) ·
1

p+
n−i log(n)−1,1

≤ O(log n) ·
en

1 + i log n
= O(n log n) ·

1

1 + i log n
.

Then the expected optimisation time is bounded by

⌈n/ log n⌉−1
∑

i=0

E (Ti ) ≤ O(n log n) ·
⌈n/ log n⌉−1

∑

i=0

1

1 + i log n

≤ O(n log n) ·

⎛

⎝1 +
⌈n/ log n⌉−1

∑

i=1

1

i log n

⎞

⎠

= O(n log n) ·
(

1 +
H⌈n/ log n⌉−1

log n

)

= O(n log n)

using H⌈n/ log n⌉−1 ≤ Hn ≤ ln(n) + 1 in the last step. ⊓⊔

4 Large Success Rates Fail

In this section, we show that the choice of the success rate is crucial as when s is a

large constant, the runtime becomes exponential.

Theorem 4.1 Let the update strength F ≤ 1.5 and the success rate s ≥ 18 be con-

stants. With probability 1 − e−�(n/ log4 n) the self-adjusting (1, λ) EA needs at least

e�(n/ log4 n) evaluations to optimise OneMax.

The reason why the algorithm takes exponential time is that now F1/s is small and

λ only increases slowly in unsuccessful generations, whereas successful generations

decrease λ by a much larger factor of F . This is detrimental during early parts of

the run where it is easy to find improvements and there are frequent improvements

that decrease λ. When λ is small, there are frequent fallbacks, hence the algorithm

stays in a region with small values of λ, where it finds improvements with constant

probability, but also has fallbacks with constant probability. We show, using another

potential function based on Definition 2.7, that it takes exponential time to escape

from this equilibrium.

Definition 4.2 We define the potential function g2(X t ) as

g2(X t ) := OM(xt ) + 2.2 log2
F λt .

While g1(X t ) used a (capped) linear contribution of logF (λt ) for h(λt ), here we use

the function h(λt ) := 2.2 log2
F (λt ) that is convex in logF (λt ), so that changes in λt
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have a larger impact on the potential. We show that, in a given fitness interval, the

potential g2(X t ) has a negative drift.

Lemma 4.3 Consider the self-adjusting (1, λ) EA as in Theorem 4.1. Then there is a

constant δ > 0 such that for every 0.84n + 2.2 log2(4.5) < g2(X t ) < 0.85n,

E (g2(X t+1) − g2(X t ) | X t ) ≤ −δ.

Proof We abbreviate �g2 := E (g2(X t+1) − g2(X t ) | X t ). Given that for all λ ≥ 1

h(λ/F) = 2.2 log2
F (λ/F) = 2.2

(

logF (λ) − 1
)2 ≥ 0 = h(1)

then by Lemma 2.8, for all λ, �g2 is at most

(

�+
i,λ + h(λ/F) − h(λF1/s)

)

p+
i,λ + h(λF1/s) − h(λ) − �−

i,λ p−
i,λ

=
(

�+
i,λ + 2.2 log2

F (λ/F) − 2.2 log2
F (λF1/s)

)

p+
i,λ

+ 2.2 log2
F (λF1/s) − 2.2 log2

F (λ) − �−
i,λ p−

i,λ

=
(

�+
i,λ + 2.2(logF (λ) − 1)2 − 2.2(logF (λ) + 1/s)2

)

p+
i,λ

+ 2.2(logF (λ) + 1/s)2 − 2.2 log2
F (λ) − �−

i,λ p−
i,λ

=
(

�+
i,λ −

(

1 +
1

s

)

· 4.4 logF (λ) + 2.2 −
2.2

s2

)

p+
i,λ

+
4.4 logF λ

s
+

2.2

s2
− �−

i,λ p−
i,λ.

The terms containing the success rate s add up to

(1 − p+
i,λ)

(
4.4 logF λ

s
+

2.2

s2

)

.

This is non-increasing in s, thus we bound s by the assumption s ≥ 18, obtaining

�g2 ≤
(

�+
i,λ −

19

18
· 4.4 logF λ + 2.2 −

2.2

324

)

p+
i,λ +

4.4 logF λ

18
+

2.2

324
− �−

i,λ p−
i,λ.

(13)

We note that in Eq. (13), λ ∈ R≥1 but since the algorithm creates ⌊λ⌉ offspring, the

forward drift and the probabilities are calculated using ⌊λ⌉. In the following in all the

computations the last digit is rounded up if the value was positive and down otherwise

to ensure the inequalities hold. We start taking into account only ⌊λ⌉ ≥ 5, that is,

λ ≥ 4.5 and later on we will deal with smaller values of λ. With this constraint on λ

we use the simple bound p−
i,λ ≥ 0. Bounding �+

i,λ ≤ ⌈log λ⌉ + 0.413 using Eq. (5) in
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Lemma 2.2,

�g2 ≤
(

2.613 + ⌈log λ⌉ −
19

18
· 4.4 logF λ −

2.2

324

)

p+
i,λ +

4.4 logF λ

18
+

2.2

324
.

For all λ ≥ 1, OM(xt ) ≥ 0.85n implies g2(X t ) ≥ 0.85n. By contraposi-

tion, our precondition g2(X t ) < 0.85n implies OM(xt ) < 0.85n. Therefore, using

Eq. (1) in Lemma 2.2 with the worst case OM(xt ) = 0.85n and ⌊λ⌉ = 5 we get

p+
i,λ ≥ 1 − e

e+0.15⌊λ⌉ ≥ 1 − e
e+5·0.15

> 0.216. Substituting these bounds we obtain

�g2 ≤
(

2.613 + ⌈log λ⌉ −
19

18
· 4.4 logF λ −

2.2

324

)

0.216 +
4.4 logF λ

18
+

2.2

324

≤ 0.5562 + 0.216⌈log λ⌉ − 0.7587 logF λ

The assumption F ≤ 1.5 implies that logF λ ≥ log λ. Using this and ⌈log λ⌉ ≤
log(λ) + 1 yields

�g2 ≤ 0.5562 + 0.216(log(λ) + 1) − 0.7587 log λ

= 0.7722 − 0.5427 log λ

≤ 0.7722 − 0.5427 log 4.5 ≤ −0.4054.

Up until now we have proved that �g2 ≤ −0.4058 for all OM(xt ) < 0.85n and ⌊λ⌉ ≥
5. Now we need to consider ⌊λ⌉ < 5. For ⌊λ⌉ < 5, that is, λ < 4.5, the precondition

g2(X t ) > 0.84n + 2.2 log2(4.5) implies that OM(xt ) > 0.84n. Therefore, the last

part of this proof focuses only on 0.84n < OM(xt ) < 0.85n and ⌊λ⌉ < 5. For this

region we use again Eq. (13), but bound it in a more careful way now. By Eq. (3) in

Lemma 2.2, p−
i,λ ≥

(
OM(xt )

n
− 1

e

)⌊λ⌉
≥

(

0.84 − 1
e

)⌊λ⌉
and bounding �+

i,λ and �−
i,λ

using Eqs. (5) and (4) in Lemma 2.2 yields:

�g2 ≤

⎛

⎝

∞
∑

j=1

(

1 −
(

1 −
1

j !

)⌊λ⌉
)

−
19

18
· 4.4 logF λ + 2.2 −

2.2

324

⎞

⎠

︸ ︷︷ ︸

α

p+
i,λ

+
4.4 logF λ

18
+

2.2

324
−

(

0.84 −
1

e

)⌊λ⌉
. (14)

We did not bound p+
i,λ in the first term yet because the factor α in brackets

preceding it can be positive or negative. We now calculate precise values for
∑∞

j=1

(

1 −
(

1 − 1
j !

)⌊λ⌉
)

giving e−1, 2.157, 2.4458 and 2.6511 for ⌊λ⌉ = 1, 2, 3, 4,
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respectively. Given that F ≤ 1.5 the factor α is negative for all 1.5 ≤ λ < 4.5, because

⎛

⎝

∞
∑

j=1

(

1 −
(

1 −
1

j !

)⌊λ⌉
)

−
19

18
· 4.4 logF λ + 2.2 −

2.2

324

⎞

⎠

≤

⎛

⎝

∞
∑

j=1

(

1 −
(

1 −
1

j !

)⌊λ⌉
)

− 4.4 logF (λ) + 2.2

⎞

⎠

≤

⎧

⎪
⎨

⎪
⎩

4.8511 − 4.4 log1.5(3.5) = −8.74 3.5 ≤ λ < 4.5

4.6458 − 4.4 log1.5(2.5) = −5.29 2.5 ≤ λ < 3.5

4.357 − 4.4 log1.5(1.5) = −0.043 1.5 ≤ λ < 2.5

On the other hand, for λ < 1.5 and ⌊λ⌉ = 1, α is positive when λ < Fγ for

γ = 1933
7524

+ 45e
209

≈ 0.8422 and negative otherwise. With this we evaluate different

ranges of λ separately using Eq. (14). For 1 ≤ λ < Fγ , we get ⌊λ⌉ = 1 and by

Lemma 2.2 if 0.84n ≤ i ≤ 0.85n and n ≥ 163 then p+
i,λ ≤ 0.069, thus

�g2 ≤
(

e + 1.2 −
19

18
· 4.4 logF (λ) −

2.2

324

)

0.069 +
4.4

18
logF (λ)

+
2.2

324
−

(

0.84 −
1

e

)

≤ −0.076 logF (λ) − 0.195 ≤ −0.195.

For Fγ ≤ λ < 1.5, by Lemma 2.2 we bound p+
i,λ ≥ n−OM(xt )

en
≥ 0.0551:

�g2 ≤
(

e + 1.2 −
19

18
· 4.4 logF (λ) −

2.2

324

)

0.0551 +
4.4

18
logF (λ)

+
2.2

324
−

(

0.84 −
1

e

)

≤ −0.0114 logF (λ) − 0.2498 ≤ −0.2498.

For 1.5 ≤ λ < 2.5, by Lemma 2.2 we bound p+
i,λ ≥ 1 − e

e+0.3
≥ 0.0993

�g2 ≤
(

4.357 −
19

18
· 4.4 logF (λ) −

2.2

324

)

0.0993 +
4.4

18
logF (λ)

+
2.2

324
−

(

0.84 −
1

e

)2

≤ 0.2159 − 0.2167 logF (λ)

≤ 0.2159 − 0.2167 log1.5(1.5) ≤ −0.0008.
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Fig. 1 Bounds on �g2 with a maximum of −0.0008 for λ = 1.5

For 2.5 ≤ λ < 3.5 we use p+
i,λ ≥ 1 − e

e+0.45
= 0.142,

�g2 ≤
(

4.6458 −
19

18
· 4.4 logF (λ) −

2.2

324

)

0.142 +
4.4

18
logF (λ)

+
2.2

324
−

(

0.84 −
1

e

)3

≤ 0.5612 − 0.415 logF (λ)

≤ 0.5612 − 0.415 log1.5(2.5) ≤ −0.376.

Finally for 3.5 ≤ λ < 4.5 we use p+
i,λ ≥ 1 − e

e+0.6
= 0.1808,

�g2 ≤
(

4.8511 −
19

18
· 4.4 logF (λ) −

2.2

324

)

0.1808 +
4.4

18
logF (λ)

+
2.2

324
−

(

0.84 −
1

e

)4

≤ 0.832 − 0.5952 logF (λ)

≤ 0.832 − 0.5952 log1.5(3.5) ≤ −1.006.

With these results we can see that the potential is negative with λ ∈ [1, 4.5) and

0.84n < OM(xt ) < 0.85n. Hence, for every 0.84n + log2(4.5) < g2(X t ) < 0.85n,

and δ = 0.0008, �g2 ≤ −δ. ⊓⊔

Finally, with Lemmas 4.3 and 2.3, we now prove Theorem 4.1.

Proof of Theorem 4.1 We apply the negative drift theorem with scaling (Theorem 2.6).

We switch to the potential function h(X t ) := max{0, n − g2(X t )} in order to fit the

perspective of the negative drift theorem. In this case we can pessimistically assume

that if h(X t ) = 0 the optimum has been found.

The first condition of the negative drift theorem with scaling (Theorem 2.6) can

be established with Lemma 4.3 for a = 0.15n and b = 0.16n − 2.2 log2(4.5). Fur-

thermore, with Chernoff bounds we can prove that at initialization h(X t ) ≥ b with

probability 1 − 2−�(n).

To prove the second condition we need to show that the probability of large jumps

is small. Starting with the contribution that λ makes to the change in h(X t ), we

use Lemma 2.3 to show that this contribution is at most 2.2 log2(eF1/sn3) ≤ 4.79 +
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19.8 log2 n ≤ 20 log2 n with probability exp(−�(n2)), where the last inequality holds

for large enough n.

The only other contributor is the change in fitness. The probability of a jump in

fitness away from the optimum is maximised when there is only one offspring. On

the other hand the bigger the offspring population the higher the probability of a large

jump towards the optimum. Taking this into account and pessimistically assuming that

every bit flip either decreases the fitness in the first case or increases the fitness in the

latter we get the following probabilities. Recalling (9),

Pr (OM(xt ) − OM(xt+1) ≥ κ) ≤
1

κ!

Pr (OM(xt+1) − OM(xt ) ≥ κ) ≤ 1 −
(

1 −
1

κ!

)λ

Given that 1
κ! ≤ 1 −

(

1 − 1
κ!

)λ
, and that λ ≤ eF1/sn3.

Pr (|OM(xt+1) − OM(xt )| ≥ κ) ≤ 1 −
(

1 −
1

κ!

)eF1/sn3

≤
eF1/sn3

κ!

≤
eκ+1 F1/sn3

κκ

Joining both contributions, we get

Pr
(

|g2(X t+1) − g2(X t )| ≥ κ + 20 log2 n
)

≤
eκ+1 F1/sn3

κκ
. (15)

To satisfy the second condition of the negative drift theorem with scaling (Theorem 2.6)

we use r = 21 log2 n and κ = j log2 n in order to have κ + 20 log2 n ≤ jr for j ∈ N.

For j = 0 the condition Pr (|g2(X t+1) − g2(X t )| ≥ jr) ≤ e0 is trivial. From Eq. (15),

we obtain

Pr (|g2(X t+1) − g2(X t )| ≥ jr) ≤
eF1/se( j log2 n)n3

( j log2 n) j log2 n

We simplify the numerator using

e( j log2 n)n3 = e( j log(n) ln(n)/ ln(2))n3 = n(3+ j log(n)/ ln(2))

and bound the denominator as

( j log2 n) j log2 n ≥ (log n)2 j log2 n = n2 j log(n) log log(n),
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yielding

Pr (|g2(X t+1) − g2(X t )| ≥ jr) ≤ eF1/sn(3+ j log(n)/ ln(2)−2 j(log n) log log n)

= eF1/sn(3+ j(log(n)/ ln(2)−2(log n) log log n)).

For n ≥ 7, log(n)/ ln(2) − 2(log n) log log n ≤ −4, hence

Pr (|g2(X t+1) − g2(X t )| ≥ jr) ≤ eF1/sn3−4 j .

which for large enough n is bounded by e− j as desired.

The third condition is met with r = 21 log2 n given that δℓ/(132 log((21 log2 n)/δ))

= �(n/ log log n), which is larger than r2 = �(log4 n) for large enough n.

With this we have proved that the algorithm needs at least e�(n/ log4 n) generations

with probability 1 − e−�(n/ log4 n). Since each generation uses at least one fitness

evaluation, the claim is proved. ⊓⊔

We note that although Theorem 4.1 is applied for OneMax specifically, the con-

ditions used in the proof of Theorem 4.1 and Lemma 4.3 apply for several other

benchmark functions. This is because our result only depends on some fitness levels

of OneMax and other functions have fitness levels that are symmetrical or resemble

these fitness levels. We show this in the following theorem. To improve readability we

use |x |1 :=
∑n

i=1 xi and |x |0 :=
∑n

i=1(1 − xi ).

Theorem 4.4 Let the update strength F ≤ 1.5 and the success rate s ≥ 18 be con-

stants. With probability 1 − e−�(n/ log4 n) the self-adjusting (1, λ) EA needs at least

e�(n/ log4 n) evaluations to optimise:

• Jumpk(x) :=

{

n − |x |1 if n − k < |x |1 < n,

k + |x |1 otherwise,

with k = o(n),

• Cliffd(x) :=

{

|x |1 if |x |1 ≤ d,

|x |1 − d + 1/2 otherwise,

with d = o(n),

• ZeroMax(x) := |x |0,

• TwoMax(x) := max {|x |1 , |x |0},

• Ridge(x) :=

{

n + |x |1 if x = 1i 0n−i , i ∈ {0, 1, . . . , n},
|x |0 otherwise.

Proof For Jumpk and Cliffd , given that k and d are o(n) the algorithm needs to

optimise a OneMax-like slope with the same transition probabilities as in Lemma 4.3

before the algorithm reaches the local optima. Hence, we can apply the negative drift

theorem with scaling (Theorem 2.6) as in Theorem 4.1 to prove the statement.

For ZeroMax the algorithm will behave exactly as in OneMax, because it is

unbiased towards bit-values. Similarly, for TwoMax, independently of the slope the
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algorithm is optimising, it needs to traverse through a OneMax-like slope needing at

least the same number of function evaluations as in OneMax.

Finally, for Ridge, unless the algorithm finds a search point on the ridge (x ∈ 1i 0n−i

with i ∈ {0, 1, . . . , n}) beforehand, the first part of the optimisation behaves as Zero-

Max and similar to Theorem 4.1 by Lemma 4.3 and the negative drift theorem with

scaling (Theorem 2.6) it will need at least eCn/ log4 n generations with probability

e−Cn/ log4 n to reach a point with |x |1 ≤ 0.15n for some constant C > 0.

It remains to show that the ridge is not reached during this time, with high probabil-

ity. We first imagine the algorithm optimising ZeroMax and note that the behaviour

on Ridge and ZeroMax is identical as long as no point on the ridge is discovered.

Let x0, x1, . . . be the search points created by the algorithm on ZeroMax in order of

creation. Since ZeroMax is symmetric with respect to bit positions, for any arbitrary

but fixed t we may assume that the search point xt with d = |xt |1 is chosen uniformly

at random from the
(

n
d

)

search points that have exactly d 1-bits. There is only one

search point 1d0n−d that on the function Ridge would be part of the ridge. Thus, for

d ≥ 0.15n the probability that xt lies on the ridge is at most

(
n

d

)−1

≤
(

n

0.15n

)−1

≤
( n

0.15n

)−0.15n

=
(

20

3

)−0.15n

.

(Note that these events for t and t ′ are not independent; we will resort to a union bound

to deal with such dependencies.) By Lemma 2.3, during the optimisation of any uni-

modal function every generation uses λ ≤ eF1/sn3 with probability 1−exp (−�(n2)).

By a union bound over eCn/ log4 n generations, for an arbitrary constant C > 0, each

generation creating at most eF1/sn3 offspring, the probability that a point on the ridge

is reached during this time is at most

eCn/ log4 n · eF1/sn3 ·
(

20

3

)−0.15n

= e−�(n).

Adding up all failure probabilities, the algorithm will not create a point on the ridge

before eCn/ log4 n generations have passed with probability 1 − e−�(n/ log4 n), and the

algorithm needs at least e�(n/ log4 n) evaluations to solve Ridge with probability 1 −
e−�(n/ log4 n). ⊓⊔

5 Experiments

Due to the complex nature of our analyses there are still open questions about the

behaviour of the algorithm. In this section we show some elementary experiments

to enhance our understanding of the parameter control mechanism and address these

unknowns. All the experiments were performed using the IOHProfiler [43].

In Sect. 3 we have shown that both the self-adjusting (1, λ) EA and the self-

adjusting (1 + λ) EA have an asymptotic runtime of O(n log n) evaluations on
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Fig. 2 Box plots of the number of evaluations used by the self-adjusting (1, λ) EA, the self-adjusting

(1 +λ) EA with s = 1, F = 1.5 and the (1, λ) EA over 1000 runs for different n on OneMax. The number

of evaluations is normalised by n log n

OneMax. This is the same asymptotic runtime as the (1, λ) EA with static parame-

ters λ = ⌈log e
e−1

(n)⌉ [22]. We remark that very recently the conditions for efficient

offspring population sizes have been relaxed to λ ≥ ⌈log e
e−1

(cn/λ)⌉ for any constant

c > e2 [44]. However, this only reduces the best known value of λ by 1 or 2 for the con-

sidered problem sizes, and so we stick to the simpler formula of λ = ⌈log e
e−1

(n)⌉, i. e.

the best static parameter value reported in [22]. Unfortunately the asymptotic notation

may hide large constants, therefore, our first experiments focus on the comparison of

these three algorithms on OneMax.

Figure 2 displays box plots of the number of evaluations over 1000 runs for different

problem sizes on OneMax. From Fig. 2 we observe that the difference between both

self-adjusting algorithms is relatively small. This indicates that there are only a small

number of fallbacks in fitness and such fallbacks are also small. We also observe that

the best static parameter choice from [22] is only a small constant factor faster than

the self-adjusting algorithms.

In the results of Sects. 3 and 4 there is a gap between s < 1 and s ≥ 18 where

we do not know how the algorithm behaves on OneMax. In our second experiment,

we explore how the algorithm behaves in this region by running the self-adjusting

(1, λ) EA on OneMax using different values for s shown in Fig. 3. All runs were

stopped once the optimum was found or after 500n generations were reached. We

found a sharp threshold at s ≈ 3.4, indicating that the widely used one-fifth rule

(s = 4) is inefficient here, but other success rules achieve optimal asymptotic runtime.
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Fig. 3 Average number of generations with 99% bootstrapped confidence interval of the self-adjusting

(1, λ) EA with F = 1.5 in 100 runs for different n, normalised and capped at 500n generations

Fig. 4 Fixed target results for the self-adjusting (1, λ) EA on OneMax with n = 1000 (100 runs)

Additionally, in Fig. 4 we plot fixed target results, that is, the average time to reach

a certain fitness, for n = 1000 for different s. All runs were stopped once the optimum

was found or after 500n generations. No points are graphed for fitness values that

were not reached during the allocated time. We note that the plots do not start exactly

at n/2 = 500; this is due to the random effects of initialisation. From here we found

that the range of fitness values with negative drift is wider than what we where able

to prove in Sect. 4. Already for s = 3.4, there is an interval on the scale of number of

ones around 0.7n where the algorithm spends a large amount of evaluations to traverse

this interval. Interestingly, as s increases the algorithm takes longer to reach points

farther away from the optimum.

We also explored how the parameter λ behaves throughout the optimisation depend-

ing on the value of s. In Fig. 5 we can see the average λ at every fitness value for

n = 1000. As expected, on average λ is larger when s is smaller. For s ≥ 3 we can
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Fig. 5 Average λ values for each fitness level of the self-adjusting (1, λ) EA on OneMax with n = 1000

(100 runs)

appreciate that on average λ < 2 until fitness values around 0.7n are reached. This

behaviour is what creates the non-stable equilibrium slowing down the algorithm.

Finally, to identify the area of attraction of the non-stable equilibrium, in Fig. 6

we show the percentage of fitness evaluations spent in each fitness level for n =
100 (100 runs) and different s values near the transition between polynomial and

exponential. Runs were stopped when the optimum was found or when 1,500,000

function evaluations were made. The first thing to notice is that for s = 20 the algorithm

is attracted and spends most of the time near n/2 ones, which suggests that it behaves

similar to a random walk. When s decreases, the area of attraction moves towards the

optimum but stays at a linear distance from it. For s ≤ 3.4 most of the evaluations

are spent near the optimum on the harder fitness levels where λ tends to have linear

values.

6 Discussion and Conclusions

We have shown that simple success-based rules, embedded in a (1, λ) EA, are able to

optimise OneMax in O(n) generations and O(n log n) evaluations. The latter is best

possible for any unary unbiased black-box algorithm [11, 25].

However, this result depends crucially on the correct selection of the success rate s.

The above holds for constant 0 < s < 1 and, in sharp contrast, the runtime on OneMax

(and other common benchmark problems) becomes exponential with overwhelming

probability if s ≥ 18. Then the algorithm stagnates in an equilibrium state at a linear

distance to the optimum where successes are common. Simulations showed that, once

λ grows large enough to escape from the equilibrium, the algorithm is able to maintain
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Fig. 6 Percentage of fitness function evaluations used per fitness value for the self-adjusting (1, λ) EA on

OneMax with n = 100 over 100 runs (runs were stopped when the optimum was found or when 1,500,000

function evaluations were made)

large values of λ until the optimum is found. Hence, we observe the counterintuitive

effect that for too large values of s, optimisation is harder when the algorithm is far

away from the optimum and becomes easier when approaching the optimum. (To our

knowledge, such an effect was only reported before on HotTopic functions [45] and

Dynamic BinVal functions [46].)

There is a gap between the conditions s < 1 and s ≥ 18. Further work is needed to

close this gap. In our experiments we found a sharp threshold at s ≈ 3.4, indicating

that the widely used one-fifth rule (s = 4) is inefficient here, but other success rules

achieve optimal asymptotic runtime.

Our analyses focus mostly on OneMax, but we also showed that when s is large the

self-adjusting (1, λ) EA has an exponential runtime with overwhelming probability

on Jumpk , Cliffd , ZeroMax, TwoMax and Ridge. We believe that these results can

be extended for many other functions: we conjecture that for any function that has a

large number of contiguous fitness levels that are easy, that is, that the probability of

a successful generation with λ = 1 is constant, then there is a (large) constant success

rate s for which the self-adjusting (1, λ) EA would have an exponential runtime. We

suspect that many combinatorial problem instances are easy somewhere, for example

problems like minimum spanning trees, graph colouring, Knapsack and MaxSat

tend to be easy in the beginning of the optimisation.

Given that for large values of s the algorithm gets stuck on easy parts of the opti-

misation and that OneMax is the easiest function with a unique optimum for the

(1 + 1) EA [47–49] with regards to the expected optimisation time, in our prelim-

inary work [26] we conjectured that any s that is efficient on OneMax would also

be a good choice for any other problem. This conjecture was very recently disproved

by Kaufmann, Larcher, Lengler and Zou [50], who showed that OneMax is not the

easiest function with respect to fitness improvements, and that for a BinaryValue

function with dynamically changing weights, improvements are even easier to find.

This leads to a parameter setup for which the self-adjusting (1, λ) EA is efficient on
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OneMax, but inefficient on dynamic BinVal [50]. The paper [50] concludes that

there are two different notions of “easiness” and the ease of finding improvements is

the more relevant notion for success-based parameter control mechanisms.

Another open question is to establish sufficient conditions for the self-adjusting

(1, λ) EA to perform well. The present authors recently made progress in this direction

by showing that on all problems on which improvements are always hard to find, called

everywhere-hard problems, self-adjustment in the self-adjusting (1, λ) EA works as

intended, for all constant values of the success rate s [51].
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A Proof of Lemma 3.7

This appendix contains the proof of Lemma 3.7 that was omitted from the main part.

Lemma 3.7 Consider the self-adjusting (1, λ) EA as in Theorem 3.5. Let OM
∗
t :=

maxt ′≤t OM(xt ′) be its best-so-far fitness at generation t and let T be the first gener-

ation in which the optimum is found. Then with probability 1 − O(1/n) the following

statements hold for a large enough constant r > 0 (that may depend on s).

1. For all t ≤ T in which λt ≥ 4 log n, we have OM(xt+1) ≥ OM(xt ).

2. For all t ≤ T , the fitness is at least: OM(xt ) ≥ OM
∗
t − r log n.

Proof of Lemma 3.7 Let E t
1 denote the event that λt < 4 log n or OM(xt+1) ≥ OM(xt ).

Hence we only need to consider λt -values of λt ≥ 4 log n ≥ 2 log e
e−1

n and by

Lemma 2.2 Eq. (3) we have

Pr
(

E t
1

)

≤
(

e − 1

e

)λt

≤
(

e − 1

e

)2 log e
e−1

n

=
1

n2
.
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Given that the event E t
1 happens in each step with probability at most 1

n2 , by a union

bound, the probability that this happens in the first T generations, with T being a

random variable with E (T ) < ∞, is at most
∑∞

t=1 Pr (T = t) · t/n2 = E (T ) /n2, and

by Theorem 3.1 E (T ) /n2 = O(1/n). Hence, the probability that the first statement

holds is 1 − O(1/n). For the second statement, let t∗ be a generation in which the

best-so-far fitness was attained: OM(xt∗) = OM
∗
t . By Lemma 3.3, abbreviating α :=

2 s
s+1

logF (enF1/s), the condition OM(xt∗) ≥ OM(xt ) + r log n implies g1(X t∗) ≥
OM(xt∗) − α ≥ OM(xt ) − α + r log n ≥ g1(X t ) − α + r log n.

Now define events E t
2 = (∀t ′ ∈ [t + 1, n2] : g1(X t ′) ≥ g1(X t ) + α − r log(n)).

We apply the negative drift theorem (Theorem 2.5) to bound Pr
(

E t
2

)

from above. For

any t < n2 let a := g1(X t ) − r log n + α and b := g1(X t ) < n, where r > α will be

chosen later on. We pessimistically assume that the fitness component of g can only

increase by at most 1. Lemma 3.4 has already shown that, even under this assumption,

the drift is at least a positive constant. This implies the first condition of Theorem 2

in [35]. For the second condition, we need to bound transition probabilities for the

potential. Owing to our pessimistic assumption, the current fitness can only increase

by at most 1. The fitness only decreases by j if all offspring are worse than their parent

by at least j . Hence, for all λ, the decrease in fitness is bounded by the decrease in

fitness of the first offspring. The probability of the first offspring decreasing fitness

by at least j is bounded by the probability that j bits flip, which is in turn bounded

by 1/( j !) ≤ 2/2 j . The possible penalty in the definition of g changes by at most

max
(

se
e−1

, se
e−1

· 1
s

)

= e
e−1

< 2. Hence, for all t ,

Pr (|g1(X t−1) − g1(X t )| ≥ j + 2 | g1(X t ) > a) ≤
8

2 j+2
,

which meets the second condition of Theorem 2 in [35]. It then states that there is a

constant c∗ such that the probability that within 2c∗(a−b)/4 generations a potential of

at most a is reached, starting from a value of at least b, is 2−�(a−b). By choosing the

constant r large enough, we can scale up a − b and thus make 2c∗(a−b)/4 ≥ n2 and

2−�(a−b) = O(1/n2). This yields Pr
(

E t
2

)

= O(1/n2).

Arguing as before, using a union bound we show that the probability that E t
2 happens

during the first T generations is at most
∑∞

t=1 Pr (T = t) · t · O(1/n2) = O(1/n).

By Markov’s inequality, the probability of not finding the optimum in n2 generations,

that is, Pr
(

T ≥ n2
)

is at most E (T ) /n2 = O(1/n) as well. Adding up all failure

probabilities completes the proof. ⊓⊔
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