Taleb, W orcid.org/0000-0003-2179-7963, Pessu, F, Wang, C et al. (3 more authors) (2017) Siderite micro-modification for enhanced corrosion protection. npj Materials Degradation, 1. 13. ISSN 2397-2106
Abstract
Production of oil and gas results in the creation of carbon dioxide (CO₂) which when wet is extremely corrosive owing to the speciation of carbonic acid. Severe production losses and safety incidents occur when carbon steel (CS) is used as a pipeline material if corrosion is not properly managed. Currently corrosion inhibitor (CI) chemicals are used to ensure that the material degradation rates are properly controlled; this imposes operational constraints, costs of deployment and environmental issues. In specific conditions, a naturally growing corrosion product known as siderite or iron carbonate (FeCO₃) precipitates onto the internal pipe wall providing protection from electrochemical degradation. Many parameters influence the thermodynamics of FeCO₃ precipitation which is generally favoured at high values of temperatures, pressure and pH. In this paper, a new approach for corrosion management is presented; micro-modifying the corrosion product. This novel mitigation approach relies on enhancing the crystallisation of FeCO₃ and improving its density, protectiveness and mechanical properties. The addition of a silicon-rich nanofiller is shown to augment the growth of FeCO₃ at lower pH and temperature without affecting the bulk pH. The hybrid FeCO₃ exhibits superior general and localised corrosion properties. The findings herein indicate that it is possible to locally alter the environment in the vicinity of the corroding steel in order to grow a dense and therefore protective FeCO₃ film via the incorporation of hybrid organic-inorganic silsesquioxane moieties. The durability and mechanical integrity of the film is also significantly improved.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Characterization and analytical techniques; Mechanical engineering |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Functional Surfaces (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 24 Jul 2017 08:22 |
Last Modified: | 16 Jul 2020 11:24 |
Status: | Published |
Publisher: | Springer Nature |
Identification Number: | 10.1038/s41529-017-0014-1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:119262 |