Hodgson, D., Burgess, C., Altaie, M. et al. (2 more authors) (2022) An intuitive picture of the Casimir effect. [Preprint - Research Square]
Abstract
The Casimir effect, which predicts the emergence of an attractive force between two parallel, highly reflecting plates in vacuum, plays a vital role in various fields of physics, from quantum field theory and cosmology to nanophotonics and condensed matter physics. Nevertheless, Casimir forces still lack an intuitive explanation and current derivations rely on regularisation procedures to remove infinities. Starting from special relativity and treating space and time coordinates equivalently, this paper overcomes no-go theorems of quantum electrodynamics and obtains a local relativistic quantum description of the electromagnetic field in free space. When extended to cavities, our approach can be used to calculate Casimir forces directly in position space without the introduction of cut-off frequencies.
Metadata
Item Type: | Preprint |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This is an open access preprint under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Theoretical Physics (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Physics Teaching (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 22 Jan 2025 14:09 |
Last Modified: | 22 Jan 2025 14:09 |
Identification Number: | 10.21203/rs.3.rs-1498514/v1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:222098 |