de Vega, E.S., Allegri, G., Zhang, B. orcid.org/0000-0002-0428-7745 et al. (2 more authors) (2024) Pseudo-ductile behaviour of fibrous composite Z-pins. Composites Part A: Applied Science and Manufacturing, 178. 108009. ISSN 1359-835X
Abstract
This paper describes the development and characterisation of a novel type of composite Z-pin able to accommodate large deformation without exhibiting fibre failure. Three types of pseudo-ductile Z-pins are fabricated by means of micro-pultrusion of polybenzoxazole (PBO) fibres. Namely, unidirectional PBO fibre (uPBO) Z-pins in combination with a ductile (uPBO/DCT) and a brittle (uPBO/BT) matrix system are developed, together with a twisted PBO fibre Z-pin in combination with a ductile matrix (tPBO/DCT). Single pin bridging tests are carried out across the full mode mixity range from mode I (Φ = 0) to mode II (Φ = 1). The tests reveal that uPBO-based pins are able to pull out throughout the full mode mixity range, regardless of the ductility of the pin matrix. uPBO/DCT pins exhibit a 20-fold increase in energy dissipation per pin than traditional carbon fibre/bismaleimide (CF/BMI) pins at load mode mixities higher than Φ = 0.9. The mode I behaviour of all pins considered is comparable. All PBO pins exhibit an apparent delamination toughness enhancement superior to CF/BMI at mode mixities above Φ = 0.2, with a ductile matrix increasing the average energy dissipated per pin by a further 2–8 %.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | A. Polymer-matrix composites (PMCs); B. Delamination; E. Pultrusion; Z-pins |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Systems and Design (iESD) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 03 Oct 2024 13:46 |
Last Modified: | 03 Oct 2024 13:46 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.compositesa.2024.108009 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:217852 |