Driver, L., Douglas, K., Lucas, D.I. et al. (5 more authors) (2024) Developing a predictive model for low-temperature Laval nozzles with applications in chemical kinetics. Physics of Fluids, 36 (7). 076128. ISSN 1070-6631
Abstract
Laval nozzles are used in the CRESU (“Cinétique de Réaction en Écoulement Supersonique Uniforme”) method to generate a collimated low temperature (5–200 K), low pressure (30–500 Pa), high Mach number (1 < M < 20) supersonic jet. Laval nozzles have been designed using the Method of Characteristics (MOC) since the development of CRESU, which is an analytical method that assumes inviscid, isentropic flow, and is routinely used to design nozzle profiles for a particular gas and temperature with a uniform shock free exit. This study aims to provide a robust computational framework to overcome the limitations of the MOC while also providing recommendations on the numerical model setup required to model a low-temperature supersonic jet. It also discusses the blockage effects when using the Pitot tube method for flow characterization, the influence of inlet turbulence and reservoir size. Numerical results are validated using two different experimental apparatuses from research groups at the University of Leeds and the University of Birmingham. Finally, a MATLAB framework was developed and has been provided as an open source toolbox to allow any user to perform computational fluid dynamics on any Laval nozzle, with the ability to change nozzle geometry, operating conditions and bath gas. The toolbox has been rigorously tested against many benchmark cases, which shows that steady-state Reynolds-averaged Navier–Stokes with the k-omega-shear stress transport turbulence model can be used to accurately predict global quantities, such as average temperature in the stable region of the supersonic jet.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Author(s) 2024. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC-BY-NC 4.0). |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Thermofluids, Surfaces & Interfaces (iETSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 17 Jul 2024 15:30 |
Last Modified: | 08 Nov 2024 16:46 |
Status: | Published |
Publisher: | American Institute of Physics |
Identification Number: | 10.1063/5.0216622 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:214889 |