de Vries, NB, Barker, AJ orcid.org/0000-0003-4397-7332 and Hollerbach, R (2023) Tidal dissipation due to the elliptical instability and turbulent viscosity in convection zones in rotating giant planets and stars. Monthly Notices of the Royal Astronomical Society, 524 (2). pp. 2661-2683. ISSN 0035-8711
Abstract
Tidal dissipation in star-planet systems can occur through various mechanisms, among which is the elliptical instability. This acts on elliptically deformed equilibrium tidal flows in rotating fluid planets and stars, and excites inertial waves in convective regions if the dimensionless tidal amplitude (ε) is sufficiently large. We study its interaction with turbulent convection, and attempt to constrain the contributions of both elliptical instability and convection to tidal dissipation. For this, we perform an extensive suite of Cartesian hydrodynamical simulations of rotating Rayleigh-Bénard convection in a small patch of a planet. We find that tidal dissipation resulting from the elliptical instability, when it operates, is consistent with ε³, as in prior simulations without convection. Convective motions also act as an effective viscosity on large-scale tidal flows, resulting in continuous tidal dissipation (scaling as ε²). We derive scaling laws for the effective viscosity using (rotating) mixing-length theory, and find that they predict the turbulent quantities found in our simulations very well. In addition, we examine the reduction of the effective viscosity for fast tides, which we observe to scale with tidal frequency (ω) as ω⁻². We evaluate our scaling laws using interior models of Hot Jupiters computed with MESA. We conclude that rotation reduces convective length scales, velocities and effective viscosities (though not in the fast tides regime). We estimate that elliptical instability is efficient for the shortest-period Hot Jupiters, and that effective viscosity of turbulent convection is negligible in giant planets compared with inertial waves.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | convection; hydrodynamics; instabilities; planet-star interactions |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Funding Information: | Funder Grant number STFC (Science and Technology Facilities Council) ST/W000873/1 STFC (Science and Technology Facilities Council) ST/S000275/1 STFC (Science and Technology Facilities Council) ST/R00059X/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 Jul 2023 10:35 |
Last Modified: | 27 Nov 2023 11:57 |
Status: | Published |
Publisher: | Oxford University Press |
Identification Number: | 10.1093/mnras/stad1990 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:201073 |