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A B S T R A C T 

Tidal dissipation in star–planet systems can occur through various mechanisms, among which is the elliptical instability. This 
acts on elliptically deformed equilibrium tidal flows in rotating fluid planets and stars, and excites inertial waves in convective 
regions if the dimensionless tidal amplitude ( ε) is sufficiently large. We study its interaction with turbulent convection, and 

attempt to constrain the contributions of both elliptical instability and convection to tidal dissipation. For this, we perform an 

e xtensiv e suite of Cartesian hydrodynamical simulations of rotating Rayleigh–B ́enard convection in a small patch of a planet. We 
find that tidal dissipation resulting from the elliptical instability, when it operates, is consistent with ε3 , as in prior simulations 
without con vection. Con vective motions also act as an ef fecti ve viscosity on large-scale tidal flows, resulting in continuous 
tidal dissipation (scaling as ε2 ). We derive scaling laws for the ef fecti ve viscosity using (rotating) mixing-length theory, and 

find that they predict the turbulent quantities found in our simulations very well. In addition, we examine the reduction of the 
ef fecti ve viscosity for fast tides, which we observe to scale with tidal frequency ( ω) as ω 

−2 . We e v aluate our scaling laws using 

interior models of Hot Jupiters computed with MESA . We conclude that rotation reduces conv ectiv e length-scales, v elocities, and 

ef fecti ve viscosities (though not in the fast tides regime). We estimate that elliptical instability is efficient for the shortest period 

Hot Jupiters, and that ef fecti ve viscosity of turbulent convection is negligible in giant planets compared with inertial waves. 

Key words: convection – hydrodynamics – instabilities – planet–star interactions. 
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 I N T RO D U C T I O N  

idal deformations and the corresponding dissipation of tidal flows 
ead to transfers of angular momentum and energy from one body 
o its companion. This can result in many long-term effects in 
xoplanetary and close binary systems, such as tidal circularization 
f orbits (e.g. Nine et al. 2020 ), spin-orbit synchronization (e.g. 
obbs-Dixon, Lin & Mardling 2004 ; Lurie et al. 2017 ) and tidal
eating (potentially leading to radius inflation, e.g. Bodenheimer, 
in & Mardling 2001 ). Perhaps the most extreme outcome is orbital
ecay and inspiral of a short-period exoplanet, which has potentially 
een observed for WASP-12b (e.g. Maciejewski et al. 2016 ; Patra 
t al. 2020 ; Turner, Ridden-Harper & Jayawardhana 2021 ). Indeed, 
onsiderable study has gone into understanding the effects of tides in 
tars and planets, a re vie w of which can be found in Ogilvie ( 2014 ).
idal effects are thought to be especially strong in Hot Jupiters and
ther short-period exoplanets due to their close proximities to their 
tars. 

The tidal response in a star or planet is usually split up into
n equilibrium or non-w ave-lik e tide, and a dynamical or wave-
ike tide (e.g. Zahn 1977 ; Ogilvie 2012 ). The equilibrium tide is
he quasi-hydrostatic fluid bulge rotating around the body (e.g. 
ahn 1977 ), while the dynamical tide consists of waves generated 
y resonant tidal forcing (such as inertial waves in convection 
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ones or internal gravity – or gravitoinertial – waves in radiation 
ones). The equilibrium tide is thought to be dissipated through its
nteraction with turbulence, usually of a conv ectiv e nature (Zahn
966 ; Goldreich & Nicholson 1977 ; Zahn 1989 ; Goodman & Oh
997 ; Penev et al. 2007 , 2009a ; Penev, Barranco & Sasselov 2009b ;
gilvie & Lesur 2012 ; Duguid, Barker & Jones 2019 , 2020 ; Vidal
 Barker 2020a , b ), or by instabilities of the equilibrium tide itself

which could involve the excitation of waves (e.g. C ́ebron, Maubert
 Le Bars 2010 ; C ́ebron et al. 2012 ; C ́ebron et al. 2013 ; Barker &
ithwick 2013a ; Barker 2016 ; Barker, Braviner & Ogilvie 2016 ).

n this paper, we primarily focus on the equilibrium tide and study
idal dissipation due to both the elliptical instability of this flow in
onv ectiv e re gions of stars and planets (e.g. Waleffe 1990 ; Kerswell
002 ), as well as the interaction of the equilibrium flow with the
urbulent convection itself. 

The net effect of the equilibrium tide is to deform the body into an
llipsoidal shape (more correctly: prolate spheroidal in the absence 
f a rotational bulge) that approximately follows the companion. 
ecently, such a tidal deformation was observed directly for the first

ime in the Hot Jupiter WASP-103b using the transit method (Barros
t al. 2022 ). The elliptical deformation of body 1 due to a second body
s represented by the ellipticity, or (dimensionless) tidal amplitude 
arameter: 

= 

(
m 2 

m 1 

)(
R 1 

a 

)3 

, (1) 
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M

Figure 1. Eccentricity distribution of exoplanets with P orb < 100 d and 
masses M > 0.3 M J . Those with P orb < 10 d are referred to as ‘Hot Jupiters’. 
Exoplanets with periods P orb < 3 d have eccentricities e < 0.2, but most of 
these planets have e ≈ 0, whereas those with P orb > 10 d exhibit a wide range 
of eccentricities. Figure produced from exoplanets.org (Han et al. 2014 ). 

w  

a  

o  

t  

t  

W  

b  

s
 

i  

d  

o  

d  

t  

w  

e  

o  

d  

i
 

m  

t  

ε  

o  

t  

w  

J  

b  

w  

t  

(  

d  

o  

h  

p  

P  

t  

o  

e  

e
 

(  

t  

a  

e

Q

H  

L  

s  

h  

t  

t  

d  

t
i  

a  

H  

r  

J  

a
 

b  

m  

w  

2  

e  

w  

v  

b  

e  

o  

b  

o  

a  

w  

b  

t  

a  

a  

s  

p  

S  

a  

(
 

t  

i  

c  

c  

2  

c  

g  

H  

t
 

d  

I  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2661/7218585 by guest on 27 N
ovem

ber 2023
here m 1 and m 2 are the masses of bodies 1 and 2, i.e. the planet
nd host star, respectively, R 1 is the radius of body 1, and a is the
rbital separation (semimajor axis). This is essentially a measure of
he maximum dimensionless radial displacement in the equilibrium
ide. The largest estimated elliptical deformation is ε ≈ 0.06 for

ASP-19b (with its 0.78-d orbit, e.g. Hebb et al. 2010 ), and it can
e similarly large with values ε � 0.01 for other Hot Jupiters with
hort orbital periods (or in the very closest binary stars). 

This elliptical deformation of the streamlines allows the elliptical
nstability to operate (Waleffe 1990 ; Kerswell 2002 ). This elliptical
eformation, no matter how small, can potentially excite pairs
f inertial waves inside the planet. These waves couple with the
eformation (Waleffe 1990 ), leading to the exponential growth of
heir amplitudes. This mechanism is in essence a triadic (three-
ave) resonance interaction. To excite these inertial waves in planets,

nergy must be extracted from the tidal flow. Thus, rotational or
rbital energy is transferred into these waves and when these waves
issipate this energy is then converted into heat. In this way, the
nstability results in tidal dissipation. 

Ho we ver, if the waves are viscously damped – by either the (tiny)
olecular viscosity of the fluid or by a turbulent viscosity – before

hey can grow, the instability cannot operate. Larger deformations
result in faster growth of the waves and means that they can

 v ercome larger viscosities. An easily deformable, close-in planet is
herefore fa v oured for occurrence of this instability, which suggests
hy we are considering it as a potential tidal mechanism for Hot

upiters. Specifically, it is thought that the elliptical instability could
e one of the processes responsible for circularization of planets
ith very short orbital periods up to 3 d and tidal locking, i.e.

idal spin-orbit synchronization, for planets with orbits up to 15 d
Barker & Lithwick 2013a ; Barker 2016 ). We show the eccentricity
istribution of these planets as a function of their orbital period from
bservations in Fig. 1 . Nearly all Hot Jupiters with periods P orb < 3 d
ave eccentricities e ≈ 0, and those with P orb < 10 d have a strong
reference for circular orbits or small e values, whereas those with
 orb > 10 d have a wide range of eccentricities. This distribution is

hought to result from tidal dissipation inside these planets, but based
NRAS 524, 2661–2683 (2023) 
n prior theoretical results it does not appear to be explained by the
lliptical instability in isolation. We thus appear to require a more
fficient mechanism of tidal dissipation in Hot Jupiters. 

To parameterize the rate of tidal dissipation we often use the
modified) tidal quality factor Q 

′ 
, first defined when considering

idal evolution in the Solar system (Goldreich & Gold 1963 ). Q 

′ 
is

 measure of the total energy stored in the tide ( E 0 ) divided by the
nergy dissipated in one tidal period, i.e. 

 

′ = 

3 

2 k 2 

2 πE 0 ∫ | ̇E | dt 
. (2) 

ere, Ė is the rate at which energy is dissipated and k 2 is the
o v e number, which is related to the density distribution (being
maller for more centrally condensed bodies, with k 2 = 3/2 for a
omogeneous fluid body). A higher value of Q 

′ 
corresponds to lower

idal dissipation and vice versa. Thus lo wer v alues of Q 

′ 
correspond

o shorter tidal evolutionary time-scales. However, the actual tidal
issipation time-scales depend on both the process in question and
he periods and masses of the planet and companion. The factor Q 

′ 

s not a constant parameter, and will depend on tidal frequency and
mplitude as well as the internal structure and rotation of the body.
o we ver, it is thought to take values of approximately 10 1 −10 2 for

ocky planets (Goldreich & Soter 1966 ), approximately 10 4 −10 5 for
upiter (Lainey et al. 2009 ) and Saturn (Lainey et al. 2012 , 2017 ), and
pproximately 10 6 or smaller for Hot Jupiters (e.g. Ogilvie 2014 ). 

The effect of the elliptical instability on tidal dissipation has
een studied previously in simulations using a local Cartesian box
odel located within the convection zone of a planet or star, both
ith (Barker & Lithwick 2013b ) and without (Barker & Lithwick
013a ) weak magnetic fields. The former study found that the
lliptical instability leads to bursty behaviour, where the inertial
aves generated by the instability interact with geostrophic columnar
ortical flows produced by their non-linear interactions. Similar
ehaviour features in global hydrodynamical simulations of the
lliptical instability (Barker 2016 ), where zonal flows take the place
f columnar vortices in the resulting dynamics. Such dynamics might
e referred to as ‘predator-prey’ dynamics, where columnar vortices
r zonal flows can be thought of as the predators and the inertial waves
s the prey. In this analogy, the columnar vortices feed off the inertial
aves, and as the energy in these vortices increases inertial waves
ecome suppressed. Once the energy in the inertial waves decreases,
he vortices also consequently decay until inertial waves can grow
gain, and the cycle starts anew. Upon taking magnetic fields into
ccount in the local model, the behaviour changed from bursts to
ustained energy input into the flow, as magnetic fields break up or
revent formation of strong vortices (Barker & Lithwick 2013b ).
imilar sustained behaviour is observed if vortices are damped by
n artificial frictional force mimicking Ekman friction due to rigid
no-slip) boundaries (e.g. Le Reun et al. 2017 ). 

These prior studies set out to analyse the elliptical instability in
he conv ectiv e re gions of planetary (or stellar) interiors, but did not
ncorporate convection explicitly (except perhaps by moti v ating a
hoice of viscosity). The interaction of the elliptical instability with
onvection has been studied within linear theory (e.g. Kerswell
002 ; Le Bars & Le Diz ̀es 2006 ), experimentally in cylindrical
ontainers (e.g. La v orel & Le Bars 2010 ) and using idealized laminar
lobal simulations in a triaxial ellipsoid (e.g. C ́ebron et al. 2010 ).
o we ver, these studies mainly focused on heat transport instead of

idal dissipation, which is our focus in this work. 
Due to the introduction of convection another mechanism of tidal

issipation arises in the system in addition to the elliptical instability.
f convection is sufficiently turbulent, it is expected that it will damp

file:exoplanets.org
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Figure 2. Location of the local box in the convection zone of a Hot Jupiter. 
We indicate the rotation axis and the local temperature gradient, which is 
represented by the red (hot) and blue (cold) sides of the box. 
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he tidal flow, which can be parameterized as an effective viscosity
eff � ν (where ν is the tiny molecular viscosity). The efficiency 
f this ef fecti ve viscosity as a tidal dissipation mechanism has long
een a subject of debate, particularly in the fast tides regime when
he tidal frequenc y ω e xceeds the dominant conv ectiv e frequenc y ω c .
n this case, the ef fecti ve viscosity is expected to be reduced, but its
caling behaviour with ω is debated. Based on arguments stemming 
rom mixing-length theory (MLT), Zahn ( 1966 , 1989 ) argued that it
s expected that the ef fecti ve viscosity is proportional to the distance
ravelled by an eddy, i.e. the characteristic convective length-scale. 
o we ver, if the conv ectiv e time-scale exceeds the tidal time-scale,

he conv ectiv e eddies can only interact with the tidal flow on the
ength-scales an eddy can travel in a tidal period. Following this
rgument, the length-scale, and thus the ef fecti ve viscosity, is reduced 
ccording to νeff ∝ ω c / ω. Goldreich & Nicholson ( 1977 ) on the other
and argued that only conv ectiv e eddies with a frequency similar to
he tidal frequency, i.e. ω c ∼ ω, could contribute. These so-called 
resonant’ eddies would then require both a smaller velocity and 
maller length-scale to achieve this ‘resonant’ frequenc y. F ollowing 
 Kolmogorov scaling argument, this results in an ef fecti ve viscosity
caling as νeff ∝ ( ω c / ω) −2 . 

Many works have been devoted to finding the correct scaling 
sing numerical and asymptotic methods. The initial works of Penev 
t al. ( 2007 , 2009a ) and Penev et al. ( 2009b ) found evidence for the
−1 scaling, but did not probe very far into the fast tides regime

i.e. they considered ω/ω c = O(1)). Subsequent works (Ogilvie & 

esur 2012 ; Duguid et al. 2019 , 2020 ; Vidal & Barker 2020a , b )
ound strong evidence to fa v our the ω 

−2 scaling for fast tides ( ω 

 10 ω c ), although a weaker ‘intermediate scaling’ closer to ω 

−1 

with exponent between −1 and −1/2) has been observed for ω 

ω c (Duguid, Barker & Jones 2020 ; Vidal & Barker 2020a , b ).
n this paper, we build upon Duguid et al. ( 2019 , 2020 ), which used
ocal box simulations to examine the ef fecti ve viscosity of convective
urbulence acting on the tidal flow. Here, we also take into account
he influence of rapid rotation on the convection, which is expected 
o be important in giant planets and young rapidly rotating stars. We
lso use an elliptical background flow that corresponds more closely 
ith the equilibrium tide, compared with the oscillating shear flow 

sed in, for example, Duguid et al. ( 2019 , 2020 ), which is stable to
lliptical instability. 

In de Vries, Barker & Hollerbach ( 2023 , hereafter Paper 1 ), the
on-linear interactions of the elliptical instability and convection 
ere studied. We found evidence for both energy injection by the 

lliptical instability, as well as from the ef fecti ve viscosity arising
rom the interaction of turbulent convection with the equilibrium 

ide. On the other hand, the generation of conv ectiv e large-scale
ortices (LSVs), which on a planet may instead correspond with 
onal flows at mid to low latitudes Currie et al. ( 2020 ), was found
o inhibit the elliptical instability for the Ekman numbers (ratio of
iscous to Coriolis forces) we considered. 
In Paper 1 , we focused on exploring the fluid dynamical inter-

ctions of the elliptical instability and convection. Here, we build 
pon Paper 1 by endea v ouring to quantify the tidal dissipation
hat arises from the elliptical instability as well as the ef fecti ve
iscosity of the convection acting on the equilibrium tide. To this
nd, we will derive temperature-based scaling laws using MLT and 
otating mixing-length theory (RMLT) for key convective quantities 
uch as the v ertical conv ectiv e v elocity, dominant length-scale and
requenc y, and v erify that the y agree with our simulation results.
uguid et al. ( 2020 ) obtained empirically three regimes for the

f fecti ve viscosity (as a function of the ratio of tidal to conv ectiv e
requencies) in non-rotating simulations based on the aforementioned 
onv ectiv e quantities. Here, we apply RMLT to their scaling laws
o derive corresponding expressions for the ef fecti ve viscosity in the
apidly rotating regime (rele v ant for giant planets). We compare these
redictions with simulations to validate using these prescriptions 
or rotating convection. If these agree, we might be able to use
hese expressions to compute the ef fecti ve viscosity using realistic
alues of the Rayleigh number, Ekman number, viscosity and tidal 
eformation for giant planets and stars. To this end we continue to
xplore the local box model (Barker & Lithwick 2013a , b ; Le Reun
t al. 2017 ) – representing a small patch of the polar regions of a
lanet or star (see Fig. 2 ) – from P aper 1 . We e xtend the range of
arameters they surveyed by running additional simulations varying 
he Ekman number, Rayleigh number and ellipticity . Finally , we will
pply our scaling laws to make predictions for Q 

′ 
– based on interior

odels of Hot Jupiters obtained using the Modules for Experiments 
n Stellar Astrophysics ( MESA ) code – due to the elliptical instability
nd turbulent ef fecti ve viscosity and compare these to the linearly
xcited inertial waves. 

In Section 2, we will describe the model used and discuss the
caling law predictions obtained using RMLT. In Section 3, we derive
caling laws from our numerical simulations and compare them with 
ur theoretical predictions. In Section 4, we outline the astrophysical 
mplications of our results, by generating interior profiles of a Jupiter-
ike and a Hot Jupiter planet using the MESA code, which we use
o e v aluate the dissipation of the equilibrium tide and that due to
nertial waves. We finally present a discussion and our conclusions 
n Section 5 . 

 M O D E L  SETUP  

.1 The elliptical instability 

e build upon the results of Paper 1 , using the same setup, so we
nly give a brief overview of our model here (see Paper 1 for a more
etailed description.) In the frame rotating with the tidal bulge, the
quilibrium tide is an elliptical flow inside the planet. We define the
otation rate γ of this flow as the difference of the planetary spin �
nd the orbital rotation rate n , i.e. γ ≡ � − n . We work in the frame
otating with the planet at the rate �, modelling a small patch of
n equilibrium tidal flow, which we treat as a background flow U 0 .
MNRAS 524, 2661–2683 (2023) 
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ollowing Barker & Lithwick ( 2013a ), the equilibrium tide can be
ritten in this frame as 

 0 = A x = −γ ε

⎛ 

⎝ 

sin (2 γ t) cos (2 γ t) 0 
cos (2 γ t) − sin (2 γ t) 0 

0 0 0 

⎞ 

⎠ x , (3) 

here x represents the position vector from the centre of the
lanet in the frame rotating with the planet. This represents the
xact equilibrium tide of a uniformly rotating incompressible fluid
ody perturbed by an orbiting companion (Chandrasekhar 1967 ;
arker et al. 2016 ), and also approximates the main features of the
quilibrium tide in more realistic models (e.g. Ogilvie 2012 ; Barker
020 ). 
The elliptical instability operates when two inertial waves have

requencies that approximately add up to the tidal frequency 2 γ
Kerswell 2002 ). In the short-wavelength limit, this occurs for two
aves with frequencies ω = ±γ . These waves must also satisfy the

nertial wave dispersion relation: 

 = ±2 � cos ( θ ) , (4) 

here θ is the angle between the wav ev ector and rotation axis, which
herefore allows us to determine that the elliptical instability can only
perate in the interval n = [ −�, 3 �]. Outside this interval, no inertial
av es e xist that satisfy both the dispersion relation and ω = ±γ .
inally, it is known that the elliptical instability grows exponentially
in linear theory) at a rate proportional to εγ (Kerswell 2002 ). For
larity of presentation γ = � is chosen in this work, unless otherwise
entioned, resulting in n = 0, i.e. strictly representing the unphysical

ase where there is no rotation of the bulge. The body in question
s not rotating around its companion which causes the tidal effects.
o we ver, it turns out that for simulations the only linear effect of

hoosing a different value of �, and therefore a non-zero value of
 , would be to modify the fastest growing mode, and also its growth
ate (e.g. Kerswell 2002 ; Barker & Lithwick 2013a ; de Vries et al.
023 ). 

.2 Go v erning equations and setup of the simulations 

e use rotating Rayleigh–B ́enard convection as our model to
tudy the conv ectiv e instability, as it is the simplest model of
otating convection (Chandrasekhar 1961 ) which allows us to study
ts interaction with the elliptical instability. In addition, we use
he Boussinesq approximation, which is appropriate for studying
mall-scale conv ectiv e (and wav e like) flows. Using the Boussinesq
pproximation is valid if the vertical size of our simulated domain
 is much smaller than a pressure or density scale height and the
ows in the simulation are much slower than the sound speed
Spiegel & Veronis 1960 ). Ho we ver, by choosing this approxima-
ion we neglect variations in properties such as the density and
emperature. Furthermore, since we require small vertical scales,
e cannot model the largest scale conv ectiv e flows using this

pproximation. 
The box in our current setup represents a polar region, which

e have illustrated in Fig. 2 . This location arises from our choice
f rotation axis, which points in the z-direction, and temperature
rofile, which solely depends on z. By making this choice the
ocal rotation and gravity vectors are either aligned or anti-aligned
depending on the sign of �) and thus we are located at the poles.
he aforementioned temperature profile of the conduction state, i.e.

he temperature gradient introduced by the hot and cold plates at the
ottom and top of our box, respectively, and about which we perturb,
NRAS 524, 2661–2683 (2023) 
s given by 

g ( T − T 0 ) = 

zN 

2 

d 
, (5) 

here g is the local gravitational acceleration (assumed constant), α
s the (constant) thermal expansion coefficient and N 

2 is the (constant)
quared Brunt–V ̈ais ̈al ̈a (or buoyancy) frequency, which is (negative)
ositive for (un)stable stratification. We choose T 0 = 0 without loss
f generality. As a result, the temperature at the bottom is T ( z = 0) =
, while the temperature at the top is T ( z = d ) = N 

2 /( αg ), such that the
emperature difference is 
 T = −N 

2 / αg . Note that the introduction
f buoyancy modifies the (gravito-)inertial wave dispersion relation
o: 

 

2 = 4 �2 cos 2 ( θ ) + N 

2 sin 2 ( θ ) . (6) 

To non-dimensionalize the go v erning equations we scale lengths
y the vertical domain size d (representing the distance between the
lates), times by the thermal time-scale d 2 / κ , and we consequently
cale velocities with κ/ d . Finally, we use T = 
 T θ to scale the tem-
erature (i.e. the temperature is scaled by the temperature difference
etween the plates). Using these non-dimensionalizations and the
oussinesq approximation, the go v erning equations, in the frame

otating at the rate � about z, for the dimensionless perturbations u
nd θ to the background flow U 0 and temperature profile T ( z) are 

D u 

Dt 
+ u · ∇ U 0 + 

Pr 

Ek 
ˆ z × u = −∇p + PrRa θ ˆ z + Pr ∇ 

2 u , (7) 

∇ · u = 0 , (8) 

Dθ

Dt 
− u z = ∇ 

2 θ, (9) 

here 

d 

dt 
≡ ∂ 

∂ t 
+ u 0 · ∇ + u · ∇, (10) 

ith u = ( u x , u y , u z ) and p being the perturbation to the pressure.
he non-dimensional parameters describing the convection are the
ayleigh, Ekman, and Prandtl numbers: 

a = 

αg ( −N 

2 ) d 4 

νκ
, Ek = 

ν

2 �d 2 
, Pr = 

ν

κ
, (11) 

here ν and κ are the constant kinematic viscosity and thermal
if fusi vity. Due to the equilibrium tidal background flow there are
wo additional dimensionless numbers in the system: ε and γ (and
here would also be n if we allowed rotation of the bulge). Finally, we
an relate the Rayleigh number and dimensional squared buoyancy
requency: N 

2 = −Ra Pr κ2 / ( αg d 4 ). Upon setting Pr = 1, we find
n dimensionless (thermal time) units: N 

2 = −Ra. 
Our simulations are e x ecuted in a small Cartesian box of di-
ensionless size [ L x , L y , 1] with L x = L y = L . As in Paper 1 ,

o fully resolve bursts of the elliptical instability in tandem with
he conv ectiv e LSV we set L = 4 in most simulations. Ho we ver,
he simulations that measure properties unrelated to the elliptical
nstability are e x ecuted in a smaller box with L = 2. This box size
nsures the LSV is still present, and the results are therefore similar
o those with L = 4. From the appendix of Paper 1, we infer that
he ef fecti ve viscosity (without elliptical instability) is unaffected by
his variation of the box size. The boundary conditions are periodic
n the horizontal directions, and stress-free and impermeable in the
ertical direction. We have chosen these boundary conditions because
hey are probably more rele v ant in the deep interior of a planet, far
emo v ed from an y boundaries, than no-slip boundary conditions. The
ertical boundary conditions are therefore: �z ( z = 0) = u z ( z = 1) = 0,
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 z u x ( z = 0) = ∂ z u x ( z = 1) = ∂ z u y ( z = 0) = ∂ z u y ( z = 1) = 0. By
hoosing impermeable vertical boundaries the convection in our box 
epresents a single convection cell in the v ertical. Finally, v ertical
oundary conditions for the temperature perturbation are chosen to 
e perfectly conducting, with θ ( z = 0) = θ ( z = 1) = 0. 
The simulations are performed using the SNOOPY code (Lesur 
 Longaretti 2007 ), which implements a Fourier pseudo-spectral 
ethod using FFTW3 in a local Cartesian box. We use a sine-cosine

ecomposition in z and shearing wav es (i.e. time-dependent F ourier 
odes) in x and y to account for the linear spatial dependence of

he background flow. A third-order Runge–Kutta scheme is used for 
he time-stepping, together with a CFL safety factor to ensure the 
ime-steps are small enough to capture non-linear effects, usually set 
o 1.5. The anti-aliasing in the code uses the standard 2/3 rule (Boyd
001 ). A variety of different Rayleigh numbers were analysed using
he simulations. The values of the Rayleigh number are typically 
eported using the supercriticality R ≡ Ra/Ra c for clarity, where Ra c 
s the onset Rayleigh number (determined numerically). The range of 
he studied supercriticalities at Ek = 5 × 10 −5.5 is from 2 to 20. The
tudied values of ε range from 0.01 to 0.20, and the Ekman number
anges from 5 × 10 −4.5 to 5 × 10 −6 . 

.3 Energetic analysis of simulations 

 ollowing P aper 1 , we deriv e the kinetic energy equation by
aking the dot product of u with equation ( 7 ) and subsequently
 olume-a veraging all quantities, where the latter is defined as
 X〉 = 

1 
L 2 d 

∫ 
V 

X d V . We obtain 

d 

dt 
K = I + 〈 PrRa θu z 〉 − D ν, (12) 

here we have defined the total kinetic energy K , the energy transfer
ate from the background tidal flow I and the mean viscous dissipation
ate D ν according to 

 ≡ 1 

2 
〈| u | 2 〉 , I ≡ −〈 u A u 〉 , D ν ≡ −Pr 〈 u · ∇ 

2 u 〉 . (13) 

To obtain an equation for the thermal (potential) energy when Ra
 0, we multiply equation ( 9 ) by PrRa θ and average over the box to

btain 

d 

dt 
P = 〈 PrRa θu z 〉 − D κ , (14) 

here we have defined the mean thermal energy P and the mean
hermal dissipation rate D κ as 

 ≡ PrRa 
1 

2 
〈 θ2 〉 , D κ ≡ −PrRa 〈 θ∇ 

2 θ〉 . (15) 

The total energy is E = K + P , which thus obeys: 

d 

dt 
E = I + 2 〈 PrRa θu z 〉 − D ν − D κ = I + 2 〈 PrRa θu z 〉 − D, (16) 

here D = D ν + D κ is the total dissipation rate. In a steady state, i.e.
o change in time of the total energy, it is expected that the (time-
veraged value of the) energy injected together with the buoyancy 
ork balances the total dissipation. Since there are two energy 

njection terms, the total dissipation cannot be used directly to infer
idal dissipation rates. Ho we ver, the energy injected by the tide must
e dissipated if a steady state is to be maintained. Therefore, to
nterpret the tidal energy dissipation rate we examine the tidal energy 
njection rate I . (When Ra < 0, the thermal energy is −P and a minus
ign is introduced into both terms on the right-hand side of equation
 14 ). The buoyancy work terms then cancel between equations ( 12 )
nd ( 14 ), leaving only I and D in equation ( 16 ) such that in steady
tate I ≈ D .) 

Since we know both the elliptical instability (Barker & Lith- 
ick 2013a ) and convection (e.g. Favier, Silvers & Proctor 
014 ; Guervilly, Hughes & Jones 2014 ) in isolation can produce
eostrophic flows such as vortices, we introduce further diagnostics 
o analyse these flows and their role in any possible bursty dynamical
ehaviour. To do this, we decompose the total energy injection from
he background flow according to 

 = I 2 D 

+ I 3 D 

, (17) 

here the barotropic energy injection is defined as I 2 D = −〈 u 2 D A u 2 D 〉
nd the baroclinic energy injection is defined as I 3 D = −〈 u 3 D A u 3 D 〉 .
 2 D (and u 2 D ) are defined to include all (geostrophic) modes where
he wav ev ector has only non-vanishing x and y components, with
 z = 0, and I 3 D (and u 3 D ) includes all the modes with k z �= 0.
ecause pure inertial waves with k z = 0 have ω = 0, and this work

s concerned with conv ectiv ely unstable simulations, i.e. no gravity
av es e xist which could have non-zero frequencies even when k z =
, this decomposition can be crudely thought of as a decomposition
nto wav es/conv ectiv e eddies ( I 3 D ) and geostrophic vortices ( I 2 D ).

e have found that at small ellipticities the time-averaged energy 
nput into the vortical motions I 2 D is approximately zero (or small,
ee also Barker & Lithwick 2013a ), but that the input into the waves
 3 D is on average non-zero (which it must be when the elliptical
nstability operates) and clearly demonstrates any bursty behaviour 
bserved. Based on this observation, only results derived from I 3 D 
ill be plotted in this paper. 
Arguments to describe scaling laws for the dissipation due to the

lliptical instability were first proposed in Barker & Lithwick ( 2013a )
y (crudely) picturing the instability saturation as involving the most 
nstable single mode whose amplitude saturates when its growth rate 
 σ ) balances its nonlinear cascade rate. Thus, if the most important
ode of the elliptical instability satisfies σ ∼ ku , where k is its wave

umber magnitude and � is its velocity amplitude, then we find u
εγ / k . The total dissipation rate D therefore scales as D ∼ u 2 σ ∼

3 γ 3 / �2 . Thus, in such a statistically steady state the dissipation and
nergy injection rate are expected to scale as 

 = I ∝ ε3 . (18) 

f this scaling law holds, the dissipation falls off rapidly as the
rbital period of the planet increases, since ε ∝ P 

−2 
orb , resulting in

 

′ ∝ P 

4 
orb . The result of crudely applying this is that circularization

f Hot Jupiters would only be predicted out to about 3-d orbital
eriods. In Paper 1 , we observed that, when the elliptical instability
perates, the energy injection is consistent with either scaling as ε3 

r possibly as the steeper ε6 . We will explore this issue further here
sing simulations, and also determine the astrophysical implications 
f these results. 
We can also interpret the energy transfer rates I and �3 D in terms

f an ef fecti ve viscosity like in Paper 1 , obtaining νeff and νeff,3 D 

espectively. This interpretation is most commonly used to measure 
he interaction between turbulent convection and the equilibrium tide, 
ut also applies for the elliptical instability. To calculate the ef fecti ve
iscosity, we assume that the tidal flow is viscously dissipated by
ome spatially and temporally constant kinematic viscosity νeff , 
hich will depend in principle upon Ra, Ek, Pr, γ , and ε (and also n ,

f that was varied), as well as L . This viscous dissipation rate should
hen equal the rate of work done on the conv ectiv e flow by the tidal
o w. Follo wing Goodman & Oh ( 1997 ), Ogilvie & Lesur ( 2012 ),
nd Duguid et al. ( 2019 ), we note that the rate of work done on the
MNRAS 524, 2661–2683 (2023) 
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onv ectiv e flow is 

 = − 1 

V 

∫ 
V 

u · ( u · ∇) u 0 d V . (19) 

o obtain the rate of energy dissipation, we define the strain rate
ensor for the tidal flow as e 0 ij ≡ 1 

2 ( ∂ i U 0 ,j + ∂ j U 0 ,i ), resulting in 

2 νeff 

V 

∫ 
V 

e 0 ij e 
0 
ij d V = 4 νeff γ

2 ε2 . (20) 

he ef fecti ve viscosity is then defined by 

eff = I / (4 γ 2 ε2 ) . (21) 

In Paper 1, we found that when the elliptical instability does not
perate the convection can still interact with the tidal flow to provide
∝ ε2 such that νeff is independent of ε. Our interpretation of this

egime as ‘convective turbulent viscosity damping the tidal flow’
an be understood from crudely applying classical eddy viscosity
rguments to the Reynolds stress component 〈 u i u j 〉 that appears in
quation ( 19 ). In this approach, the velocity correlation would be
roportional to the tidal velocity shear, i.e. 〈 u i u j 〉∝∇U 0 (see e.g.
quation 19 in Terquem 2021 ) and |∇U 0 | ∼ ε, thus leading to I ∝ ε2 .

In our model, we do not consider the evolution of the tidal flow
 0 . Instead we treat it as a fixed (but time-dependent) background
ow. The energy in this background flow is considered to be much

arger than the energy in the perturbations. As such any energy
ransferred from this flow to the perturbations (or vice versa) is
egligible compared to the energy in the background flow. Therefore,
he background flow itself is not modified in our simulations. As a
onsequence, our results apply to a snapshot in the evolution of
ur system in time. This is a reasonable approximation, considering
hat time-scales of tidal evolution are typically much longer than
onv ectiv e or rotational time-scales. 

.4 Scalings of the effecti v e viscosity using MLT 

e concluded in Paper 1 that turbulent convection acts to damp the
quilibrium tidal flow like an ef fecti ve viscosity (independently of ε).
n Duguid et al. ( 2020 ), who studied the ef fecti ve viscosity in a non-
otating local box model of convection, three different regimes with
ssociated scaling laws for the ef fecti ve viscosity were observed.
he scalings they obtained depend on the convective velocity u c , the
onv ectiv e length-scale l c and the ratio of the tidal frequency ω =
 γ to the conv ectiv e frequenc y ω c , and are giv en by 

eff = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

5 u c l c 
| ω| 
ω c 

� 10 −2 , 

1 
2 u c l c 

(
ω c 
ω 

) 1 
2 | ω| 

ω c 
∈ [10 −2 , 5] , 

25 √ 

20 
u c l c 

(
ω c 
ω 

)2 
| ω| 
ω c 

� 5 . 

(22) 

e have reported the (upper bound) numerical coefficients from
uguid et al. ( 2020 ) here, but wish to clarify that rotation and our
ifferent background flow might modify these. Note that the choice
f scaling laws for the conv ectiv e quantities u c , l c , and ω c will depend
n rotation (and perhaps magnetic fields, etc.). Therefore, before we
an apply the abo v e scalings, we must deriv e appropriate scaling
aws for these quantities depending on which regime the flow is in
nd verify that these regimes apply in our numerical simulations. In
on-rotating simulations, it is reasonable to set l c = d , pretending that
 is the Boussinesq equi v alent of a pressure scale height (or mixing
ength, i.e. multiple of a pressure scale height). Ho we ver, it is not clear
hether this is appropriate for rapid rotation, where we might imag-

ne using a shorter horizontal length-scale for l c would be more ap-
NRAS 524, 2661–2683 (2023) 
ropriate instead, which would reduce the turbulent viscosity. Which
f these is appropriate may depend on the intended application, i.e.
he ef fecti ve viscosity is not a property of the fluid, but a way to
odel the interaction between a particular fluid flow and conv ectiv e
o w. From no w on we choose l c to represent a horizontal convecti ve

ength-scale, which is therefore modified by rotation, and we will
how that this is a suitable choice to match our simulation results. 

We can apply MLT (B ̈ohm-Vitense 1958 ) to predict the scaling
aws of convective properties such as convective velocities, length-
cales, turno v er times and ef fecti ve viscosities. MLT has been applied
o non-rotating cases previously (e.g. Zahn 1966 ; Duguid et al. 2019 ,
020 ), but our cases are sufficiently rapidly rotating that we must
ccount for modifications of conv ectiv e properties by rotation. To
o so, we use RMLT (Stevenson 1979 ) to predict scaling laws for
otating convection (following e.g. Barker, Dempsey & Lithwick
014 ; Mathis et al. 2016 ; Currie et al. 2020 ). Within RMLT, the
 ertical conv ectiv e v elocity, which is e xpected to be roughly equal
o the horizontal velocity on the rele v ant scales, is given by 

 c ∼ d 1 / 5 F 

2 / 5 �−1 / 5 , (23) 

here F is the vertical heat flux (more specifically a buoyancy flux
ith units of L 

2 T 

−3 ). We may write this in terms of the standard
imensionless numbers by converting the Rayleigh number into a
ux-based Rayleigh number Ra F , which are related by 

a ∼ Ra 2 / 5 F Pr 1 / 5 Ek −4 / 5 ∼ F 

2 / 5 d 8 / 5 κ−1 ν−1 / 5 Ek −4 / 5 , (24) 

ince N 

2 ∼ F 

2/5 �4/5 d −4/5 and by definition Ra F = NuRa, where
u = F /( − κN 

2 ) is a Nusselt number (ratio of total heat flux to
onductiv e flux). Conv erting to the Rayleigh number (based on a
xed temperature drop or N 

2 ) from the flux-based Rayleigh number
based on a fixed heat flux F ) entails a switch from flux-based scalings
o temperature-based (and by extension N 

2 -based) scalings. This
witch is necessary as the simulations are e x ecuted using a constant
emperature difference, i.e. they are temperature-based rather than
ux based. After this switch, RMLT predicts for the conv ectiv e
elocity: 

 c ∼ RaEk 
κ

d 
. (25) 

urthermore, the dominant horizontal length-scale of convection is
redicted to scale as 

 c ∼ �−3 / 5 F 

1 / 5 d 3 / 5 ∼ Ra 1 / 2 Ek 

Pr 1 / 2 
d. (26) 

inally, the conv ectiv e turno v er frequenc y (based on the horizontal
ength-scale) according to RMLT is 

 c ∼ u c 

l c 
∼ Ra 1 / 2 Pr 1 / 2 

κ

d 2 
. (27) 

hese are the RMLT scalings written in terms of Rayleigh, Ekman,
nd Prandtl numbers. These scalings agree with those found in
uervilly, Cardin & Schaeffer ( 2019 ); Aurnou, Horn & Julien ( 2020 ),

nd with many others, indicating that the results found from the
oriolis-Inertia-Archimedean (CIA) balance are in agreement with

he predictions of RMLT following Stevenson ( 1979 ). The three
f fecti ve viscosity scaling laws in equation ( 22 ) can be written using
hese predictions from RMLT as 

eff ∝ 

⎧ ⎨ 

⎩ 

Ra 3 / 2 Ek 2 Pr −1 / 2 κ low frequency , 
Ra 7 / 4 Ek 2 Pr −1 / 4 κ3 / 2 d −1 ω 

−1 / 2 intermediate freq. , 
Ra 5 / 2 Ek 2 Pr 1 / 2 κ3 d −4 ω 

−2 high frequency . 
(28) 
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he first of these regimes occurs when the tidal frequency is
ow, while the rotation rate is high (so that we use RMLT rather
han MLT). Naively, this situation seems counterintuitive because 
he tidal frequency is related to the rotation rate, but it can oc-
ur if the body is close to spin-orbit synchronization. We have 
ot supplied ranges of ω / ω c for which these apply as we will
etermine these based on our simulations. Instead, we elect to 
efer to these regimes as the low, intermediate and high-frequency 
egimes, where the frequency in question is the tidal frequency 
compared with the conv ectiv e frequenc y). Note that these regimes
ave not been previously verified with simulations of rotating 
onvection interacting with tidal flows (unlike in the non-rotating 
ase). 

We can use the scalings in equations ( 25 ), ( 26 ), and ( 28 ) to analyse
ur results as a function of both Rayleigh and Ekman numbers, in
egimes attainable by simulations. To analyse our simulation results 
n terms of the Ekman number, we used two approaches: fixing the
ayleigh number and fixing the supercriticality R = Ra/Ra c . The 

econd approach modifies the power of the Ekman number scaling 
s the critical Rayleigh number scales as Ra c ≈ 3( π2 /2) 2/3 Ek −4/3 for
apid rotation, which results in u c ∼ R Ek −1/3 and l c ∼ R 

1/2 Ek 1/3 ,
mitting all parameters which are set to one. This leads to the
ollowing changes to νeff scalings: 

eff ∝ 

⎧ ⎨ 

⎩ 

R 

3 / 2 Ek 0 low frequency , 
R 

7 / 4 Ek −1 / 3 ω 

−1 / 2 intermediate freq. , 
R 

5 / 2 Ek −4 / 3 ω 

−2 high frequency . 
(29) 

For completeness, since some of our simulations enter the regime 
here rotation is no longer rapid, we include here the scalings of the

ele v ant quantities using non-rotating MLT in terms of Rayleigh and
randtl numbers: 

 c ∼ Ra 1 / 2 Pr 1 / 2 
κ

d 
, (30) 

nd the rele v ant length-scale in this regime is likely to be comparable
ith the vertical length-scale d , i.e. l c = d . It follows that: 

 c ∼ Ra 1 / 2 Pr 1 / 2 
κ

d 2 
, (31) 

hich is the same scaling obtained previously using RMLT. The 
hree regimes we expect for the ef fecti ve viscosity using MLT are
hen 

eff ∝ 

⎧ ⎨ 

⎩ 

Ra 1 / 2 Pr 1 / 2 κ low frequency , 
Ra 3 / 4 Pr 3 / 4 κ3 / 2 d −1 ω 

−1 / 2 intermediate freq. , 
Ra 3 / 2 Pr 3 / 2 κ3 d −4 ω 

−2 high frequency . 
(32) 

he high-frequency regime within non-rotating MLT is unlikely 
o occur in our simulations as that regime only applies when the
idal frequency is high, yet the rotation rate is low. It is, however,
ikely to be important in reality, for example inside spun-down 
ot Jupiter host stars, due to, for example, magnetic braking 

e.g. Benbakoura et al. 2019 ). If a Hot Jupiter host star is spun
own, and is thus slowly rotating, but there is a large orbital
requency due to the short-period Hot Jupiter companion, the tidal 
requency is also high (and in the fast tides regime), indicating 
hat this regime is rele v ant there (e.g. Barker 2020 ; Duguid et al.
020 ). 
From this multitude of scalings, a new question arises: For a given

ystem, which scalings (if any!) are the correct ones? This question 
n reality consists of two separate questions. The first part of the
uestion is related to whether MLT or RMLT (or neither) predictions 
hould be used, and the second part relates to which tidal frequency
egime is applicable. One of our key aims in this paper is to test
hese scalings and to determine the appropriate ones for astrophysical 
xtrapolation. 

We can quantify the transition from MLT to RMLT using the
onv ectiv e Rossby number: 

o c ≡
(

u c 

2 �l c 

)
= 

( ω c 

2 �

)
, (33) 

hich is based on the spin of the planet, and the conv ectiv e
elocities and frequencies. Fortunately, using these temperature- 
ased definitions, regardless of whether the regime in question is 
L T or RML T, the expression for the Rossby number in terms of

he diffusion-free scalings is the same because ω c has the same form
n both regimes. This useful result was also found previously (e.g.
urnou et al. 2020 ), and leads to the expression for the conv ectiv e
ossby number: 

o c ∼ Ra 1 / 2 Pr −1 / 2 Ek . (34) 

n the other hand, the transitions between the different frequency 
egimes for νeff depend on the ratio ω / ω c , which we can write as 

ω 

ω c 

= 

ω 

u c /l c 
= 

1 

2 

2 ωl c 

u c 

≡ 1 

2 
Ro −1 

ω . (35) 

e have defined this quantity as a ‘tidal conv ectiv e Rossby number’,
o ω . The two Rossby numbers are related via the factor �/ ω. In

his work, the two Rossby numbers differ by a factor of 1/2, because
= γ = 

1 
2 ω is set for the simulations with a given Ek. The regime

ransitions are thus expected to occur at roughly the same value
f the rotation rate. Using the tidal frequency transitions obtained 
n Duguid et al. ( 2020 ), where the transition from intermediate- to
igh-frequenc y re gimes occurs around ω 

ω c 
≈ 5, this may be expected 

o occur here at Ro ω ≈ 0.1. The transition from MLT to RMLT on
he other hand is likely to start at Ro c ≈ 0.1 (e.g. fig. 4 of Barker
t al. 2014 ). 

.5 Illustrati v e simulations 

o illustrate the flow observed in our simulations, we plot snapshots
f the vertically averaged vertical vorticity perturbation (to the 
lliptical flow) 〈 ω z 〉 z at Ek = 5 × 10 −5.5 , t = 0.12 in Fig. 3 . In
he figure, on the left, we plot the simulation with Ra = 6Ra c ,
= 0.04. In this simulation, the equilibrium tide is present (as a

ackground flow, but is not shown explicitly), but the ellipticity 
s sufficiently small such that the conv ectiv e LSV inhibits the
lliptical instability ( Paper 1 ). The observed behaviour is a cyclonic
onv ectiv e LSV embedded in an anticyclonic background. However, 
he cyclone appears very noisy due to the presence of many small-
cale conv ectiv e eddies. In the figure on the right we plot the
imulation with Ra = 6Ra c , ε = 0.1. This is in the regime with a strong
lliptical instability, albeit with a slightly larger ε than realistically 
xpected for a Hot Jupiter. For illustration, we have chosen a
napshot during a burst of the elliptical instability. The cyclonic 
ortex is stronger than the one on the left-hand panel. Furthermore,
he surrounding background is more strongly anticyclonic as a 
esult. 

Our subsequent analysis of the contributions of the elliptical 
nstability to the energy injection rate (and hence tidal dissipation 
ate) is based on flows more like the one, on the right-hand panel
f Fig. 3 , while the analysis of the ef fecti ve viscosity of convection
riginates primarily from quantities measured from flows like the 
ne shown on the left-hand panel. 
MNRAS 524, 2661–2683 (2023) 
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M

Figure 3. The vertical vorticity perturbation averaged over z ( 〈 ω z 〉 z ) of the flow. The cyclonic vortex is centred for clarity in both images. Left-hand panel: 
convection on top of the equilibrium tide in the regime without the elliptical instability Ra = 6Ra, ε = 0.04, Ek = 5 × 10 −5.5 at t = 0.12. Right-hand panel: 
convection on top of the equilibrium tide in the regime with a strong elliptical instability with Ra = 6 Ra c , ε = 0.1, Ek = 5 × 10 −5.5 at t = 0.12. 

Figur e 4. Ener gy injection rate (into 3D modes) I 3 D as a function of ε for various Rayleigh numbers. The vertical dashed line at ε = 0.08 marks the transition 
between sustained behaviour on the left, and bursts in addition to sustained behaviour on the right. Three lines are fitted to the data at Ra = 6Ra c . The sustained 
behaviour is consistent with an ε2 scaling for ε � 0.08, represented by the black line. Bursts of the elliptical instability contribute on top of this sustained energy 
injection, resulting in a much larger energy injection for larger ε. The sustained + bursts energy injection is fitted using an ε3 fit in blue, and an ε6 fit in red. 
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 SCALING  L AW S  F O R  T H E  ELLIPTICAL  

NSTABILITY  A N D  ROTATING  C O N V E C T I O N  

ur simulations necessarily use dimensionless parameters that are
ar from the astrophysical ones, except perhaps for ε for the
ottest Jupiters. Hence, we now turn to obtain scaling laws for the
nergy injection due to the elliptical instability to compare with
he heuristic arguments in Section 2.3 , as well as scaling laws
or the conv ectiv e v elocity and ef fecti ve viscosity by testing the
rescriptions obtained in Section 2.4 . For the latter, we choose
arameters in the strongly rotationally constrained regime, with
ast tides, and thus we expect to observe the high-frequency RMLT
caling for the ef fecti ve viscosity in our simulations. We will also
ustify this regime as being the most rele v ant in giant planets later in
NRAS 524, 2661–2683 (2023) 

ection 4 . v  
.1 Energy injection due to elliptical instability 

hen the flow is sufficiently turbulent, the energy injection rate
 I 3 D ) due to the elliptical instability on its own scales consistently
ith ε3 (Barker & Lithwick 2013a , b ). Ho we ver, the energy injection
e observe in our simulations does not result from the elliptical

nstability alone. We plot the energy injection I 3 D as a function of
for v arious v alues of Ra at fixed Ek = 5 × 10 −5.5 in Fig. 4 ,
hich we divide into two regimes by a vertical dashed line. This
ertical dashed line is located at ε = 0.08. As we found in Paper
 , the points to the left of this line represent simulations without
isible bursts of elliptical instability for Ra � 2Ra c , for which
t appears to have been largely suppressed. The Ra = 6Ra c data
oints in burgundy are fitted using an ε2 scaling. The data agrees
ery well with this scaling for ε below the transition, indicating
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Figure 5. Left-hand panel: scaling of the vertical convective velocity compared with the predictions of MLT and RMLT at fixed Ek = 5 × 10 −5.5 . Only those 
simulations with sufficiently small ellipticities are used such that no bursts of the elliptical instability are present, as indicated by the orange data points. At 
these ellipticities, the vertical velocity is negligibly impacted by the ellipticity. We observe the RMLT scaling with Ra in red, and a hint for the non-rotating 
MLT scaling with Ra 1/2 in black. Right-hand panel: scaling of the v ertical conv ectiv e v elocity at fix ed Ra = 1.3 × 10 8 and ε ∈ [0.02, 0.05]. The blue data points 
correspond to simulations with bursts of the elliptical instability. We retrieve the RMLT scaling in red at large �, and find that the scaling tends to the MLT 

prediction to be independent of rotation rate as � becomes small, here illustrated by the black-solid line, which follows �−0.2 . 
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hat the energy injection here corresponds to an ef fecti ve viscos-
ty that is independent of ε. This presumably results from the 
ction of conv ectiv e turbulence in damping the tidal flow rather
han from the elliptical instability, as we will justify further in 
ection 3.2 . 
The points on the right of the vertical dashed line feature bursts

f instability in which the kinetic energy and energy transfer 
ates repeatedly grow to large values, indicating that the elliptical 
nstability operates in this regime. The operation of the elliptical 
nstability appears to be in addition to the ef fecti ve viscosity resulting
rom conv ectiv e turb ulence, b ut the energy injection rate due to the
lliptical instability is much larger, as we illustrate by the strong
eparture of these points from the black ε2 line. We fit these with
ur (naive) theoretically predicted ε3 fit (solid-blue line), and a 
reviously observed ε6 fit (solid-red line Barker & Lithwick 2013a ). 
oth fits are consistent with the data on the right-hand side (o v er

uch a narrow range of ε), and are inconsistent with data on the
eft. Furthermore, the data and fits are consistent at all values of Ra,
ndicating that this scaling is independent of the Rayleigh number. 
he energy injection rate of the elliptical instability would remain 
reater than that of the ef fecti ve viscosity due to convection for ε
 0.01 if we extrapolate the former with an ε3 scaling. Following 
arker & Lithwick ( 2013b ), we use the naive theoretical prediction

o obtain a proportionality constant χ from our fit to the data shown
n Fig. 4 such that I 3 D ≡ χε3 γ 3 . We find χ ≈ 0.044 for the plotted
lue line, with χ ≈ 0.18 as an upper estimate when fitting to the
op right clump of data points. If instead we calculate based on I 3 D 
 χ2 ε

6 γ 3 , we obtain χ ≡ χ2 ε
3 ≈ 22.45 × ε3 . To illustrate the 

fficiency of this ε6 scaling, we insert the highest inferred ellipticity 
f a Hot Jupiter, ε = 0.06, and find χ = 4.8 × 10 −3 . Hence, the
lliptical instability is considerably weaker if this steeper scaling 
pplies. The ε3 scaling can thus be viewed as an ‘upper bound’ on
he energy transfer rates resulting from the elliptical instability for 
mall ε. 
f

.2 Comparison of RMLT predictions to the simulations 

n this section, we explore further the regime for ε � 0.08 that
e have identified, and we will demonstrate that it results from

onv ectiv e turbulence damping the background tidal flow. First, we
t the conv ectiv e v elocities as a function of Rayleigh number in the

eft-hand panel of Fig. 5 to verify our predictions based on RMLT.
he data are obtained from simulations at fixed Ek = 5 × 10 −5.5 ,
nd with such values of ε that only sustained energy injection is
resent without visible bursts of elliptical instability (which tend to 
roduce larger vertical velocities when they occur). These values of 
that contain no visible bursts of the elliptical instability vary with
ayleigh number as stronger conv ectiv e driving results in stronger

uppression of the elliptical instability; for example at Ra = 4Ra c 
0.9 × 10 8 values up to ε = 0.04 are used, while at Ra = 10Ra c 
2.2 × 10 8 we use up to ε = 0.075, and at Ra = 20Ra c ≈ 4.4
10 8 we use up to ε = 0.1. The same values of ε are used for

ll subsequent figures as a function of Ra. In this and subsequent
gures, orange circles represent simulations without bursts of the 
lliptical instability and blue circles represent those in which there 
re visible bursts. We plot the best-fitting RMLT scaling in solid-red
nd for stronger convection (i.e. relatively weaker rotation), we fit 
he non-rotating MLT scaling in solid-black. The RMLT scaling is 
n very good agreement with our data for Ra � 3 × 10 8 , indicating
hat RMLT is the appropriate description of rotating convection in 
ur simulations. 
We separately fit the conv ectiv e v elocities as a function of the

otation rate � in the right-hand panel of Fig. 5 at constant Ra = 1.3
10 8 at ε ∈ [0.02, 0.05]. These values of ε are used in all subsequent

gures at fixed Ra. We have elected to plot these results as a function
f � instead of Ekman number because � has a more direct relation
o the tidal frequency ω than the Ekman number, particularly in real
odies where ν, d �= 1. In these simulations, we have set ν = d = 1,
o we ver, so � = (1/2)Ek −1 . The simulations at high rotation rate do
eature bursts of the elliptical instability, because the associated high 
MNRAS 524, 2661–2683 (2023) 
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Figure 6. Horizontal conv ectiv e length-scale as a function of rotation rate, calculated using the integration methods in equations ( 38 ) and ( 39 ), which agree 
well. Data points are calculated based on the heat flux (orange diamonds), vertical kinetic energy (yellow diamonds) and the squared temperature perturbations 
(green diamonds). The peaks of the heat flux spectrum are included in blue squares. The solid-red fit is the RMLT prediction of Ra 1/2 �−1 (equation 40 ), and 
the dashed-purple line is the linear onset length-scale . Left-hand panel: results at fixed Ra = 1.3 × 10 8 . The peaks of the heat flux agree well with the RMLT 

prediction. The steepest fit to the heat flux length-scale is plotted in dashed-burgundy, which probably differs from the RMLT prediction in solid-red because of 
the modest supercriticalities involved. The linear onset scaling is plotted in dashed-purple, which only agrees with our data for the three right-most points with 
the smallest supercriticalities. Right-hand panel: same but at fixed supercriticality R = 6. The heat flux data agree well with the RMLT prediction in solid-red. 
The linear onset scaling is plotted in dashed-purple, and differs from our simulation results. 
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idal frequency strengthens the elliptical instability whilst weakening
he conv ectiv e driving because the Rayleigh number is fix ed. The
ata points at strong rotation, � ≥ 10 4.4 , fit the RMLT prediction
f �−1 well. The data points at weaker rotation rates become more
eakly dependent on � as they begin to approach the non-rotating
LT prediction. The black-solid line fitted to the left-most data

oints scales only weakly as �−0.2 . It is expected that at even smaller
otation rates, or larger Rayleigh numbers, this scaling would become
ully independent of rotation. This figure indicates that the transition
rom ML T to RML T is indeed gradual, instead of abrupt. From both
gures, we find – according to RMLT – that the conv ectiv e v elocity

s well-described by 

 c = 0 . 28 RaEk 
κ

d 
, (36) 

or rapid rotation, and for weaker rotation it follows the non-rotating
LT scaling 

 c = 7 . 1 · 10 −2 Ra 1 / 2 Pr 1 / 2 
κ

d 
. (37) 

ote that both scalings are in fact diffusion-free but have been written
sing the standard dimensionless numbers from our fits. 
Next we obtain the horizontal length-scale from simulations at

xed Rayleigh number Ra = 1.3 × 10 8 and at fixed supercriticality
 = 6 as a function of �. We use two different methods to calculate
 dominant l c , illustrated here using the heat flux spectrum F ( k ⊥ 

) =
e ( ̂  u z ̂

 T ∗) as a function of horizontal wave number k ⊥ 

= 

√ 

k 2 x + k 2 y ,

here hats indicate a 2D ( k x , k y ) Fourier transform and we have
v eraged o v er the inner v ertical 1/3 of the box, i.e. between z =
/3 and 2/3, and subsequently summed up the contribution from all
odes within an integer bin of k ⊥ 

. The first prescription was used by
arker et al. ( 2014 ) and Currie et al. ( 2020 ), and is obtained by 

 c = 2 π

(∫ 
k ⊥ 

F ( k ⊥ 

)d k ⊥ ∫ 
F ( k ⊥ 

)d k ⊥ 

)−1 

, (38) 
NRAS 524, 2661–2683 (2023) 
nd the second was used by Parodi et al. ( 2004 ): 

 c = 2 π

∫ 
( k ⊥ 

) −1 F ( k ⊥ 

)d k ⊥ ∫ 
F ( k ⊥ 

)d k ⊥ 

. (39) 

n our simulations, both methods agree very well when based on
he same quantity. Ho we ver, v astly dif ferent results are obtained if
he energy spectrum (as used by Parodi et al. 2004 ) is used instead
f F ( k ⊥ 

) (as used by Barker et al. 2014 ; Currie et al. 2020 ), as
e show in both panels of Fig. 6 . The length-scales calculated
sing the heat flux according to equation ( 38 ) are plotted in orange
iamonds and the length-scales according to equation ( 39 ) but for the
ertical kinetic energy spectrum E z ( k ⊥ 

) = 

1 
2 | ̂  u z | 2 instead of F ( k ⊥ 

)
re plotted in yellow diamonds. We have opted to calculate length-
cales based on the ‘vertical kinetic energy’ spectrum E z ( k ⊥ 

) in
he latter instead of the total kinetic energy spectrum because the
otal kinetic energy spectrum is strongly dominated by the large-
cale horizontal motions of the LSV. This forces the power to be
oncentrated on the largest scales, while these horizontal motions are
nlikely to contribute substantially to heat transport or provide the
ominant contribution to the ef fecti v e viscosity. F or completeness,
he length-scale obtained from the temperature fluctuation spectrum,
.e. | ̂  θ ( k ⊥ 

) | 2 , is also plotted in green diamonds. Furthermore, we
ave added the length-scale corresponding to the highest peak of
he heat flux spectrum as a proxy for the dominant length-scale
n blue squares. The length-scales corresponding to the peaks in
he vertical kinetic energy and temperature perturbation spectra are
mitted, because they tend to be located at the box scale, likely due
o influence of the LSV, and then rapidly decrease and eventually
lign with the linear onset scale for � � 10 4.6 . Finally, fits to the data
re included, with the RMLT prediction fit in solid-red and the linear
nset length-scale in dashed-purple. 
The left-hand panel displays l c as a function of � at fixed Ra = 1.3
10 8 , on the same range as the right-hand panel of Fig. 5 . We find

hat the blue squares, i.e. the peaks of the heat flux spectrum, follow
 fit proportional to �−1 in solid-red. Note that the blue squares do
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Figure 7. Ef fecti ve viscosity as a function of Ra at Ek = 5 × 10 −5.5 . Only 
simulations featuring sustained energy injection are plotted. In addition, all 
three scaling law regimes predicted using RMLT are plotted. 

t  

a
t  

w

s  

b  

t
a  

i
v  

w  

i
a  

p  

t
 

a  

c  

w  

r  

f  

o  

t
h  

t
a  

r  

s  

s
s  

o  

c  

o
 

w  

W  

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/2/2661/7218585 by guest on 27 N
ovem

ber 2023
ot agree with this fit when � � 10 4.5 , which is probably because
he simulations are not turbulent enough then to follow RMLT and 
nstead lie more closely to the linear onset length-scale. In terms of
he length-scales as obtained from the integrals there are substantial 
ifferences between those calculated based on different quantities. 
ll three quantities match together close to linear onset for the three

ight-most data points, which have supercriticalities of 2.4, 1.8, and 
.3 from the left to right, but they diverge for � � 10 4.8 , coinciding
ith the generation of the LSV as the supercriticality of the system

ncreases. The length-scale corresponding with squared temperature 
erturbations in green diamonds stays close to the linear onset scale, 
.e. it scales as roughly �−1/3 . The length-scale based on the kinetic
nergy is much larger than the other two, but also follows a scaling
oughly similar to �−1/3 (fit not shown) in the interval � = [10 3.5 ,
0 4.6 ]. These two scalings do not match our predictions according to
MLT and also do not display a transition to become independent 
f rotation when � � 10 4.4 . The length-scale calculated using the 
eat flux on the other hand is steeper than the other two in the range
= [10 4.3 , 10 4.6 ]. RMLT is expected to apply in this range because

he flow is turbulent and strongly rotationally constrained. The slope 
tted within this range in dashed-burgundy scales as �−0.6 , which 
hould be compared with the temperature-based RMLT scaling as 
−1 . This disagreement is likely to arise from the narrow range of Ra

onsidered and because these simulations are not turbulent enough 
o match the RMLT scaling fully. Ho we ver, it is much steeper than
he result obtained from the other two quantities and tapers off at
mall � as expected. 

In the right-hand panel, we demonstrate that with fixed supercrit- 
cality R , our results are consistent with the RMLT prediction of l c 
 �−1/3 regardless of which quantity or method is used to compute 

he length-scale. The solid-red line, with the same parameters as 
he solid-red line in the left-hand panel matches the heat flux data
ell. The length-scale obtained from the temperature fluctuations is 

lightly larger, and the length-scale obtained from the vertical kinetic 
nergy is much larger. Interestingly, the peaks in blue squares do not
ollow the solid-red RMLT prediction as closely as they do in the left-
and panel. We attribute this difference to fluctuations in the spectrum 

ausing the peak to shift around, particularly as the spectrum near 
he peak of the heat flux is quite broad (see Fig. A1 in the appendix),
o the length-scale based on integrals may be better suited here. 
urthermore, while these data superficially seem to follow the linear 
nset scaling, each of these follows a distinct scaling with a different
re-factor than the onset scaling. Note that when the supercriticality is 
xed (equi v alent to plotting results as a function of RaEk 4/3 ) instead
f the Rayleigh number, the predictions of RMLT have the same 
ependence on � as the linear onset scaling, but this does not imply
hat the length-scale is controlled by viscosity. 

Based on these results, we use the length-scale obtained from the 
ntegral heat flux method in the rest of this work, i.e. the dark orange
iamonds, and use the solid-red RMLT fit whenever it is expected to
pply. From the solid-red fit of both panels of Fig. 6 , if we reintroduce
a using the definition Ra c ≈ 8.7Ek −4/3 , we obtain 

 c = 0 . 63 Ra 1 / 2 Ek Pr −1 / 2 d. (40) 

sing this scaling together with equation ( 36 ), we obtain a scaling
aw for the convective frequency 

 c ≈ 0 . 44 Ra 1 / 2 Pr 1 / 2 
κ

d 2 
. (41) 

We examine the scaling of the ef fecti ve viscosity with convection
trength (Ra) in Fig. 7 for simulations with Ek = 5 × 10 −5.5 . Only
esults from simulations with sustained energy injection are plotted in 
his figure. There is a minimum value of Ra ≈ 2.5Ra c for which using
n ef fecti ve viscosity according to RMLT reasonably approximates 
he data. This minimum also corresponds to the threshold value abo v e
hich an LSV appears (Favier et al. 2014 ; Guervilly et al. 2014 ). 
We apply these theoretically predicted and empirically fitted 

caling laws to determine an ef fecti ve viscosity in Fig. 7 . The
lue line corresponds to the low-frequency regime in equation ( 28 ),
he black line corresponds to the intermediate frequency regime, 
nd the red line to the high-frequency regime, with orange points
ndicating the simulations. Varying Ra in this figure also means 
arying the ratio of tidal to conv ectiv e frequencies, which can change
hich regime might be predicted in equation ( 28 ). The low- and

ntermediate-frequency predictions agree well with the simulations 
t high Ra. At low Ra, the simulations agree with the high-frequency
rediction, though there is a departure for the smallest Ra for which
he simulations are no longer sufficiently turbulent. 

The top panel of Fig. 8 shows instead the ef fecti ve viscosity
s a function of the rotation rate � at fixed Ra = 1.3 × 10 8 ,
orresponding to Ra = 6Ra c at Ek = 5 × 10 −5.5 . At fixed Ra,
e expect the ef fecti ve viscosity to rapidly decrease as the rotation

ate increases. Since we set γ = � in these simulations the tidal
requency is ω = 2 γ = 2 �. The scalings of the ef fecti ve viscosity
btained using RMLT according to equation ( 28 ) in terms of � are
hen, respectively, �−2 , �−2.5 , and �−4 in the low, intermediate and 
igh tidal frequency regime. In the top panel of Fig. 8 , we o v erplot
hese low-, intermediate-, and high-frequenc y re gime scalings, which 
re in good agreement with the simulation results. Based on our
esults for the conv ectiv e length-scale from the simulations, there is
ome uncertainty around the solid-red fit of �−4 . According to the
imulation data this should possibly scale as �−3.6 instead, as the 
caling obtained for the conv ectiv e length sale goes as �−0.6 instead
f �−1 . The difference in the results is negligible ho we ver, and for
onsistency with the RMLT prediction for the ef fecti ve viscosity we
pted to keep instead the �−4 scaling in the plot. 
In the bottom panel of Fig. 8 , we fixed R = 6 at ε ∈ [0.02, 0.05],

hich are the values of ε used for all subsequent results at fixed R .
e examined the variation of the ef fecti ve viscosity with �. Again,
e observe a decrease as the rotation rate is increased, though this is
MNRAS 524, 2661–2683 (2023) 



2672 N. B. de Vries, A. J. Barker and R. Hollerbach 

M

Figure 8. Top panel: ef fecti ve viscosity at fixed Rayleigh number Ra = 1.3 
× 10 8 and ε ∈ [0.02, 0.05] as a function of rotation rate, together with all 
three predictions based on RMLT and the scalings obtained in Duguid et al. 
( 2020 ). Bottom panel: same as abo v e but at constant supercriticality R = 6 
and ε ∈ [0.02.0.05]. 
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 weaker trend than we found when fixing Ra. We also observe two
ossible scaling regimes. When we compare with those expected by
MLT we again find good agreement with our simulation results.
e find that even when fixing the convective supercriticality, we

btain bursts of elliptical instability for sufficiently large �. This is
erhaps because the suppressive effect of convection on the elliptical
nstability is diminished for larger � because the ef fecti ve viscosity
s lowered, while the increased rotation rate enhances the growth rate
f the elliptical instability (relative to the viscous damping rate). 
In this section, we have generally found good agreement with

oth the predictions of RMLT for conv ectiv e v elocities and length-
cales, and with their application to the scaling laws for the ef fecti ve
iscosity acting on (tidal) oscillatory shear flows in Duguid et al.
NRAS 524, 2661–2683 (2023) 
 2020 ). Based on our fits of RMLT scaling laws to the data in Figs 7
nd 8 , we find the following effective viscosity regimes: 

eff = 

⎧ ⎨ 

⎩ 

6 . 4 · 10 −3 Ra 3 / 2 Ek 2 Pr −1 / 2 κ low freq. , 
0 . 012 Ra 7 / 4 Ek 2 Pr −1 / 4 κ3 / 2 d −1 ω 

−1 / 2 interm. freq. , 
0 . 11 Ra 5 / 2 Ek 2 Pr 1 / 2 κ3 d −4 ω 

−2 high freq. . 
(42) 

.3 Regime transitions 

he previous section tentatively suggests we can use MLT and RMLT
nd the tidal frequency regimes observed in simulations to interpret
and make predictions for) the ef fecti ve viscosity. Ho we ver, to under-
tand the full picture, one would need to understand when transitions
etween different regimes occur. As described in Section 2.4 , by
irtue of setting � = γ in our simulations, the transitions are
ikely to occur for similar values of the Rossby number. Therefore,
he occurrence of these combined transitions (ML T/RML T and the
ifferent tidal frequenc y re gimes) obfuscates the results in Figs 7
nd 8 . One way to separate these two transitions is to first consider
he quantity ω / ω c , which is important because it controls the regime
ransitions of the ef fecti ve viscosity. Ho we ver, it is also controlled by
he transition from MLT to RMLT, because ω c depends on u c and l c . In
ig. 9 , the ratio ω / ω c is plotted as a function of the Rayleigh number

n the panel on the left, at constant Ek = 5 × 10 −5.5 , and as a function
f the rotation rate in the panel on the right, at constant Ra = 1.3

10 8 . In the left-hand panel, we calculate ω c using the conv ectiv e
elocities obtained from simulations, whilst basing the conv ectiv e
ength-scale on equation ( 26 ). In addition, the prediction of ω / ω c 

ccording to RMLT simulation results, with ω c given by equation
 41 ), is plotted in solid-red. By forcing the conv ectiv e length-scale
o follow the RMLT prediction, i.e. l c ∼ Ra 1/2 , ω c will no longer
cale as Ra 1/2 when u c deviates from the RMLT prediction, and the
caling consequently changes from u c ∼ Ra to u c ∼ Ra 1/2 . This, in
urn, forces the scaling of ω c to go from ω c ∼ Ra 1/2 to ω c ∼ Ra 0 .
n the figure, this change is manifested by the data points deviating
rom the solid-red prediction as their slope decreases when Ra � 2

10 8 , in accordance with what is observed in Fig. 7 . Thus, by fixing
he length-scale but plotting the simulation data for the conv ectiv e
elocity we can easily identify at what values of ω / ω c this transition
rom RMLT to MLT occurs. From this panel, we find the transition
t ω / ω c ≈ 10, or a conv ectiv e Rossby number Ro c ≈ 0.1. 

In the right-hand panel of Fig. 9 , we show the ratio ω / ω c as a
unction of � using orange and blue (with elliptical instability bursts)
ircles, which is computed in the same way as in the left-hand panel.
n addition, ω / ω c is calculated using the simulation data directly
or both u c and l c in purple and burgundy squares. Purple squares
ndicate simulations without the elliptical instability, and burgundy
quares indicate simulations with bursts of the elliptical instability.
he prediction for ω / ω c in the RMLT regime is again plotted in
olid-red. The deviation of the orange data points from this solid-red
ine occurs for � � 10 4.4 like in the top panel of Fig. 8 . Furthermore,
his deviation coincides with ω / ω c ≈ 10, as indicated in the left-hand
anel of Fig. 9 . 

The conv ectiv e frequenc y calculated directly using the simulation
esults for both u c and l c in the purple and burgundy squares illustrates
ow the transition from RMLT to MLT occurs in our simulations.
irst of all, the purple squares and some of the burgundy squares in

he range � = [10 4.5 , 10 5 ] match the dashed-black fit of ω/ �−0.4 ∼
1.4 , illustrating that indeed according to simulations ω c ∼ u c / l c 
�−1 / �−0.6 ∼ �−0.4 . The purple squares in the interval � =

10 3.5 , 10 4.4 ] do not deviate as much from the solid-red prediction
s the pure RMLT conv ectiv e length-scale results in orange on
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Figure 9. Left-hand panel: ratio of the tidal to conv ectiv e frequencies as a function of Ra compared with the RMLT prediction at fixed Ek = 5 × 10 −5.5 . The 
data for u c are obtained from simulations, while l c is calculated using equation ( 26 ). The predicted result based on equation ( 41 ) is plotted in solid-red. The 
change from the RMLT to MLT scaling occurs around Ra ≈ 2 × 10 8 in the left-hand panel of Fig. 5 , which matches the departure observed here and occurs at 
ω / ω c ≈ 10. Right-hand panel: same at fixed Ra = 1.3 × 10 8 as a function of � in orange and blue circles. Here, the change from MLT to RMLT occurs around 
� ≈ 10 4.5 in the top panel of Fig. 8 , again matching the departure here, corresponding to ω / ω c ≈ 10. The purple and burgundy squares represent ω c calculated 
using both u c and l c , which stays closer to the prediction of ω c independent of the rotation rate, and therefore attains lower values than the RMLT prediction, 
crossing below the ω / ω c = 5 threshold. 
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he same interval. This implies that when the conv ectiv e v elocity
ecomes independent of �, so does the conv ectiv e length-scale. As
 result, ω c is maintained to be almost independent of �, which is
ndicated by scaling as ω c ∼ �0.2 according to the dashed-blue fit. 
ote also that the value of ω / ω c using simulation results decreases

o ≈1, suggesting that the ef fecti ve viscosity in this range should
ransition from the high tidal frequency to the intermediate tidal 
requenc y re gime according to the transition found in the non-rotating 
imulations of Duguid et al. ( 2020 ), if these hold here. 

Fig. 9 indicates that care must be taken to first identify the
egime of rotational influence on the convection (i.e. MLT versus 
MLT) to predict the value of ω c before calculating the ratio ω / ω c ,
nd thus determining which frequenc y re gime is rele v ant for the
f fecti ve viscosity. The deviation from the RMLT prediction for
hese quantities in both figures occurs roughly when Ro −1 

c ≈ 10, so 
e conclude that when Ro c < 0.1 RMLT is the correct prescription

or the rotating convection, and that Ro c ≈ 0.1 is where the transition
rom RMLT to MLT begins and the rotational influence diminishes. 

To fully disentangle and interpret the ef fecti ve viscosity and its
ependence on � and ω separately, we should also calculate the 
f fecti ve viscosity as a function of the ratio ω / ω c . To this end, we
se values of ω c obtained from the simulations, i.e. corresponding 
o the square markers on the right-hand panel of Fig. 9 . The results
or νeff, 3 D are plotted in Fig. 10 . These figures are closely related to
ig. 8 , but are specifically designed to explore the ω / ω c dependence.
n the left-hand panel of Fig. 10 , we show results with fixed Ra = 1.3

10 8 , while in the right-hand panel simulations with fixed R = 6 are
lotted. The ef fecti ve viscosity is di vided by the factor of u c l c which
s present in all expressions for this quantity. By eliminating this
actor the dependence of the ef fecti ve viscosity on the ratio of ω / ω c 

s therefore directly measured. It is important to note that due to the
ransition from MLT to RMLT in the left-hand panel and us fixing the
upercriticality in the right-hand panel, ω / ω c , in general, depends on
he Ekman number. In the left-hand panel, both the intermediate and 
igh-frequenc y re gimes are observ ed. The high-frequenc y re gime is
lotted in solid-red line, while the intermediate frequenc y re gime is
 e  
lotted in solid-black. Both scalings agree well with simulation data. 
he transition from the high frequency to the intermediate frequency 

egime found previously at ω / ω c ≈ 5 (without rotation in Duguid
t al. 2020 ) is plotted using a vertical dashed line in the left-hand
anel. The location of this transition agrees remarkably well with 
ur data. In the right-hand panel, only the high-frequency regime 
s observed. We thus conclude that we have not observed the low
idal frequenc y re gime in our simulations. Moreo v er, we find that the
ntermediate regime in Duguid et al. ( 2020 ) is reproduced and the
ransition to this seems to occur at the same value of ω / ω c , even when
he conv ectiv e v elocity and length-scale are influenced by rotation.
he pre-factors are, ho we ver, dif ferent from those found in Duguid
t al. ( 2020 ), both lower by approximately a factor of 2. Reproducing
quation ( 22 ) with these altered pre-factors: 

eff = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

5 u c l c 
| ω| 
ω c 

� 10 −2 , 

0 . 25 u c l c 

(
ω c 
ω 

) 1 
2 | ω| 

ω c 
∈ [10 −2 , 5] , 

3 u c l c 

(
ω c 
ω 

)2 | ω| 
ω c 

� 5 . 

(43) 

In summary, to correctly interpret and make predictions for the 
f fecti ve viscosity, one must first determine whether or not the
onvection is strongly influenced by rotation (i.e. whether RMLT 

r MLT is an appropriate description) using the conv ectiv e Rossby
umber. Then the ratio of ω / ω c , i.e. the ‘tidal Rossby number’, can
e used to determine which of the low, intermediate or high tidal
requenc y re gimes are appropriate. Upon plugging in the results for
 c and l c from equations ( 36 ) and ( 40 ): 

eff = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 . 88 Ra 3 / 2 Ek 2 Pr −1 / 2 κ | ω| 
ω c 

� 10 −2 , 

0 . 029 Ra 7 / 4 Ek 2 Pr −1 / 4 κ3 / 2 d −1 ω 

−1 / 2 | ω| 
ω c 

∈ [10 −2 , 5] , 

0 . 10 Ra 5 / 2 Ek 2 Pr 1 / 2 κ3 d −4 ω 

−2 | ω| 
ω c 

� 5 . 

(44) 

These scalings are likely to be more robust than the scalings in
quation ( 42 ), because the numerical coefficient of the scaling for
he low-frequency regime is based on a measured result in Duguid
t al. ( 2020 ) and the scaling for the intermediate frequency regime
MNRAS 524, 2661–2683 (2023) 
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Figure 10. Left-hand panel: ef fecti v e viscosity at fix ed Rayleigh number Ra = 1.3 × 10 8 as a function of ω / ω c , after dividing by u c l c . The high-frequency 
prediction is plotted in solid-red, and the intermediate frequency prediction is plotted in black. The vertical dashed-black line indicates the transition between 
these regimes at ω / ω c = 5 found previously (without rotation Duguid et al. 2020 ), which matches the transition in our data well. Right-hand panel: the same at 
fixed supercriticality R = 6, where only the high-frequency regime is present in these data. 

Table 1. Table of dimensional and nondimensional parameters reproduced 
from GSHS04 and GW21 . 

GSHS04 GW21 GW21 
R = 0.196 R J R = 0.98 R J 

u c ( ms −1 ) 0.1 0.01 −0.1 1 
� ( s −1 ) 1.75 × 10 −4 1.75 × 10 −4 1.75 × 10 −4 

d ( m ) 3 × 10 6 5.5 × 10 7 5.5 × 10 7 

ν ( m 

2 s −1 ) 10 −6 2.66 × 10 −7 3.92 × 10 −7 

κ ( m 

2 s −1 ) 10 −5 2.7 × 10 −5 1.32 × 10 −6 

Pr 0.1 0.01 0.3 
Ek 10 −15 10 −18 10 −18 

Ra 10 25 10 28 10 31 
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s no longer obfuscated by the two transitions occurring at the same
ime. 

 ASTROP HYSICAL  APPLICATIONS  

n the previous section, we obtained scaling laws to describe our sim-
lation results for tidal energy transfer rates and ef fecti ve viscosities,
s well as conv ectiv e v elocities, length-scales and frequencies. In this
ection, we strive to apply these scaling laws to ‘real’ parameters of
strophysical bodies to make predictions for these quantities in giant
lanets. This is possible because we have shown that the diffusion-
ree scaling laws of MLT and RMLT are applicable to most of our
imulations, and if we assume they also apply in reality, we can
herefore readily extrapolate our results. 

.1 Simple estimates 

e start by reporting parameter estimates from the literature for
upiter, obtained using models before (Guillot et al. 2004 , hereafter
SHS04 ) and after (Gastine & Wicht 2021 , hereafter GW21 ) the

uno mission (e.g. Bolton et al. 2017 ). We report these in Table 1 . We
alculate from this data the ratio of tidal to conv ectiv e frequencies
NRAS 524, 2661–2683 (2023) 
2 γ / ω c ) to allow us to determine if we are in the high-frequency
egime for the ef fecti ve viscosity. This ratio is found to be, upon
etting 1 ω/2 = γ = 2 π/ P orb , 

/ω c = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

9 . 4 · 10 1 
(

P orb 
1 d 

)−1 
GSHS04 , 

3 . 7 · 10 2 
(

P orb 
1 d 

)−1 
GW21 at R = 0 . 196 R J , 

2 . 4 · 10 2 
(

P orb 
1 d 

)−1 
GW21 at R = 0 . 98 R J . 

(45) 

hus we conclude that we are firmly in the high-frequency tidal
egime ( ω / ω c � 1) for the orbital periods associated with Hot
upiters, which is the regime explored in most of our simulations.
his is also likely to be the case in Jupiter due to tidal forcing from

ts moons (e.g. Goldreich & Nicholson 1977 ). 
The ef fecti ve viscosity can be calculated using the parameters from

able 1 , again setting γ = 2 π/ P . To e v aluate the dif ferent regimes,
e assume the transitions from the low to intermediate frequency

egimes obtained by Duguid et al. ( 2020 ) to obtain the following.
sing data from the left column of the table for the purposes of

llustration, we find 

eff = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

880 m 

2 /s, | ω| 
ω c 

< 10 −2 , 

2 . 54 
(

P orb 
1 d 

)1 / 2 
m 

2 /s, | ω| 
ω c 

∈ [10 −2 , 5] , 

6 . 1 · 10 −3 
(

P orb 
1 d 

)2 
m 

2 /s, | ω| 
ω c 

> 5 , 

(46) 

e have included the low-frequency regime for completeness even
hough this has not been clearly probed with our simulations. 

.2 Detailed planetary models using MESA 

o provide a more detailed estimate of the ef fecti ve viscosity and
esulting tidal dissipation in a Jupiter-like planet, we require models
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or its internal structure, i.e. profiles of pressure and density (and 
ther quantities) as a function of radius. To do so, we use a modified
ersion of the test suite case make planets of the MESA code (Paxton
t al. 2011 , 2013 , 2015 , 2018 , 2019 ; Jermyn et al. 2022 ) with the
ESASDK (Townsend 2022 ) to generate 1D interior profiles. This 

ode has been previously used to generate a range of planetary 
odels (e.g. M ̈uller, Helled & Cumming 2020 ; M ̈uller & Helled

023 ). Ho we v er, some cav eats reside in the applicability of this code
o planets: since it is designed to model stars it uses equations of
tate based on H and He without heavy elements – unless the 
OS is modified (M ̈uller et al. 2020 ) – necessary to generate for
xample a dilute core which is expected based on Juno’s gravity 
eld measurements of Jupiter (Stevenson 2020 ; Helled et al. 2022 ).
urthermore, it treats the core itself as rigid and omits the possibility
f stable layers produced by helium rain. These may be important 
or tidal dissipation (e.g. Pontin, Barker & Hollerbach 2023 ) but are
utside the scope of our study. 
MESA by default treats the convection using MLT (for which we 

se the Cox prescription, Cox & Giuli 1968 ) instead of RMLT (if we
ssume this to be v alid e ven in the presence of magnetic fields). We
ave maintained the mixing-length parameter at the standard value of 
wo, and intend to convert the obtained MLT values of these models
o RMLT later on in this work. Following M ̈uller et al. ( 2020 ), who
nd it to be negligible for planetary structure and evolution, we omit
emiconvection in our models. 

Our initial Jupiter model has a radius of 2 R J and a mass of 1 M J , of
hich 10 Earth-masses are located in a core with density 10 g cm 

−3 .
e have evolved the model for 4.5 Gyr to mimic the age of Jupiter

nd we use a constant surface irradiation of 5 × 10 4 erg cm 

−2 s −1 ,
imilar to what Jupiter receives from the Sun, which is deposited at
 column depth of 300 g cm 

−2 (about 0.7 bar). 
We also create a Hot Jupiter model with the same parameters 

xcept that we increase the surface heating to represent the irradiation 
f a one-day planet around a Sun-like star of 10 9 erg cm 

−2 s −1 .
urthermore, we incorporate additional interior heating with uniform 

ate 0.05 erg cm 

−3 s −1 throughout the fluid envelope, which can be
hought to represent the impact of tidal heating or Ohmic dissipation
or other mechanisms) that could possibly inflate a number of Hot 
upiters. In this way, whilst keeping all other parameters equal, 
e can determine the effects of the increased radius (and stronger

onvection) of a puffy Hot Jupiter on the effective viscosity and tidal
issipation rates. A summary of changes to the default inlists used 
o generate these models is provided in Appendix B . 

The conv ectiv e v elocities and length-scales (mixing lengths) 
btained using the MESA code are calculated using non-rotating 
LT. Although the rotation rate – and thus the introduction of 
MLT – is expected to af fect convecti ve length-scales and velocities, 

he effect on the heat flux is likely to be negligible (Stevenson
979 ; Ireland & Browning 2018 ). Therefore, we assume that the
eat flux is independent of rotation, and is therefore the same 
n both MLT and RMLT. We then convert u c and l c to RMLT
sing the scalings we have derived, but to do so we must use
ux-based scalings instead of the temperature-based scalings used 

n the previous sections and in the simulations of this paper. On
he other hand, the temperature difference (which is imposed in 
imulations), and as a result the buoyanc y frequenc y, are e xpected
o change under the influence of rotation, in order to carry the
ame flux. In these flux-based scalings, the conversion from MLT 

o RMLT is defined differently to the temperature-based scalings 
sed previously in this work. In the temperature-based scalings, 
he corrections introduced for both u c and l c involve Ro c lin-
arly, while in the flux-based scalings the corrections are, respec- 
ively: 

 c = 

˜ Ro 
1 / 5 
c ˜ u c , and l c = 

˜ Ro 
3 / 5 
c 

˜ l c , (47) 

here the quantities with a tilde are those calculated using non-
otating MLT. We have also denoted the Rossby number in the
bo v e equations with a tilde ( ˜ Ro c = ˜ u c / (2 �˜ l c )) because flux-based
calings imply Rossby numbers calculated using MLT and RMLT 

re different, unlike for the temperature-based scalings where they 
re the same. In the low-frequency regime, the ef fecti ve viscosity
ust therefore be scaled by 

eff ∼ u c l c ∼ ˜ u c ̃
 l c ˜ Ro 

4 / 5 
c . (48) 

his correction factor of ˜ Ro 
4 / 5 
c was also employed by Mathis et al.

 2016 ). 
In the high tidal frequency regime, the ef fecti ve viscosity is instead

caled by 

eff ∼ u c l c 

(
u c 

l c 

)2 

∼ ˜ u c ̃
 l c ˜ Ro 

4 / 5 
c 

(
˜ u c 

˜ l c 

)2 

˜ Ro 
−4 / 5 
c ∼ ˜ u c ̃

 l c 

(
˜ u c 

˜ l c 

)2 

. 

(49) 

ombining these, we find in RMLT: 

eff ∝ 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

5 ̃  u c ̃
 l c ˜ Ro 

4 / 5 
c 

| ω| 
ω c 

� 10 −2 , 

0 . 25 ̃  u c ̃
 l c ˜ Ro 

3 / 5 
c 

(
˜ u c / ̃ l c 
ω 

) 1 
2 | ω| 

ω c 
∈ [10 −2 , 5] , 

3 ̃  u c ̃
 l c 

(
˜ u c / ̃ l c 
ω 

)2 | ω| 
ω c 

� 5 . 

(50) 

Hence, while the ef fecti ve viscosity in the lo w tidal frequency
egime is strongly affected by rotation, it is entirely unaffected 
y rotation in the high tidal frequency regime according to RMLT
assuming a fixed flux independent of rotation). This follows when 
onsidering the scaling laws in equation ( 28 ) in terms of flux-based
MLT: 

eff ∝ 

⎧ ⎨ 

⎩ 

F 

3 / 5 �−4 / 5 d 4 / 5 low frequency , 
F 

7 / 10 d 3 / 5 �−3 / 5 ω 

−1 / 2 intermediate freq. , 
F ω 

−2 high frequency . 
(51) 

he equi v alent relations written using flux-based MLT would be 

˜ eff ∝ 

⎧ ⎨ 

⎩ 

F 

1 / 3 d 4 / 3 low frequency , 
F 

1 / 2 dω 

−1 / 2 intermediate freq. , 
F ω 

−2 high frequency . 
(52) 

he scaling laws in the high tidal frequency regime with and
ithout rapid rotation (i.e. according to MLT or RMLT) are therefore

dentical when written using flux-based scalings. Ho we ver, the 
egime transitions may not be the same in both cases because the flux-
ased scalings for ω c differ between ML T and RML T. Conv ectiv e
requencies are typically smaller in MLT, and as such the high tidal
requenc y re gime is generally entered for lower tidal frequencies
han in RMLT. 

We next present our results for Rossby numbers and the corre-
ponding ef fecti ve viscosities – in both the fast tide and slow tide
egimes, using both MLT and RMLT – as a function of radius in
ur two planetary models. For these illustrative calculations, we set 
 orb = 1 d and P rot = 10 h for the Jupiter model, mimicking a planet
imilar to Jupiter but orbiting its star with a period of 1 d. For the
ot Jupiter model, we instead set P orb = P rot = 1 d, representing

pin-orbit synchronization. The tidal period is P tide = 1 d for both
gures. This can be thought to represent the eccentricity tide in a
pin-orbit synchronized planet, as opposed to being based on γ = �

n , but is only chosen for illustration in the first model. 
MNRAS 524, 2661–2683 (2023) 
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Figure 11. Left-hand panel: flux-based MLT (black) and RMLT (dashed-blue) Rossby numbers as a function of radius for the Jupiter-like planet with �rot 

= 10 h, P orb = P tide = 1 d after evolving the model for 4.5 Gyr. This is much smaller than one in the whole of the interior according to both prescriptions, 
i.e. the interior is strongly rotationally constrained. The ratio of conv ectiv e to tidal frequencies (‘tidal Rossby number’), is also much smaller than one for 
these parameters, indicating that the planet is in the fast tides regime. Right-hand panel: Same but for the inflated Hot Jupiter with P rot = P orb = �tide = 1 d. 
Convection is stronger in this model but the same regimes (rapid rotation and fast tides) hold as in the left-hand panel. The ratio of ω c / � is equal to the conv ectiv e 
Rossby number here, hence the lines o v erlap. 
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In Fig. 11 , the Rossby numbers are plotted in the Jupiter model
n the left and the Hot Jupiter model on the right. The MLT
ossby number as calculated from the data is plotted in solid-
lack; the one calculated from RMLT is plotted in dashed-blue.
he MLT Rossby numbers are clearly smaller, but even in RMLT

hey are much smaller than one, indicating that the convection
s strongly rotationally constrained. Note that the lower densi-
ies and stronger convection in the inflated Hot Jupiter model
roduce larger Rossby numbers, but they are still much smaller
han one. This justifies the use of RMLT (o v er MLT) in giant
lanets. 
The ratio of conv ectiv e to tidal frequencies ( ω c / ω) is also plotted

s a function of radius in Fig. 11 . The MLT prediction for this ‘tidal
ossby number’ is plotted in solid-red and the RMLT prediction

s plotted in dashed-magenta, and these only differ by a factor of
/ | γ | . In the Hot Jupiter model, this factor equals one for our chosen

arameters, and as such ω c / ω = Ro c . For both models Ro c � 1,
uch that RMLT is the appropriate description of the convection, and
ence for the conv ectiv e frequenc y. This figure indicates that the fast
ides regime is rele v ant inside both models (except for perhaps the
nal percent or so of the radius where we approach the surface stable

ayer). 
The ef fecti ve viscosity as a function of radius is sho wn in Fig. 12

n both planetary models. In the left-hand panel, we show the
f fecti ve viscosity in the Jupiter model for our chosen rotational and
idal periods, which demonstrates that this is much larger than the

icroscopic viscosity (solid-black) for all predictions. To compute
he kinematic viscosity in Jupiter requires sophisticated calculations
utside the scope of our models (and not calculated within MESA ),
o we use the typical value obtained by French et al. ( 2012 ) for
eference, of ν = 3 × 10 −7 m 

2 s –1 , in both panels. 
There are large differences between the various predictions for

eff in Fig. 12 . The MLT prediction in the slow tides regime in
olid-blue predicts νeff ≈ 10 6 m 

2 s –1 , while the RMLT prediction in
he same slow tides regime in dashed-cyan only attains values of

10 2 m 

2 s –1 . The MLT prediction for this regime decreases slightly
rom the interior to the surface, which is because the conv ectiv e
ength-scale decreases faster than the conv ectiv e v elocity increases
rom the core to the surface. On the other hand, the RMLT prediction
NRAS 524, 2661–2683 (2023) 
ncreases towards the surface, because the Rossby number rapidly
ncreases there. The fast tides regime prediction according to both
ML T and ML T (strictly obtained using all three regimes in equation
 50 ) and the uncorrected v ersion, respectiv ely, but the fast tides one is
ost rele v ant) are plotted in solid-green and dotted-red, respectively.
he two lines o v erlap because the ef fecti ve viscosity is independent
f rotation according to both theories, as we have demonstrated
bo v e. The ef fecti ve viscosity in the fast tides regime is, ho we ver,
everal orders of magnitude smaller still than both predictions in
he slow tides regime, with a value of only ≈10 −2 m 

2 s –1 except for
lose to the surface. This value is much larger than the microscopic
iscosity, but is probably negligibly small for damping tidal flows.
his would imply an ef fecti ve Ekman number in the fast tides regime
f Ek ≈ 10 −2 / (2 · 10 −4 × (10 4 ) 2 ) = O(10 −7 ), where we have set d
o be a similar order of magnitude as the RMLT conv ectiv e length-
cale, which is O(10 4 ) throughout most of the interior, except very
lose to the surface. This value is several orders of magnitude larger
han the microscopic value, but is smaller than what is often used in
umerical simulations. 
The right-hand panel of Fig. 12 shows the effective viscosity as

 function of radius for our inflated Hot Jupiter model. We observe
hat all values for νeff have shifted upwards compared to our Jupiter

odel. Ho we ver, e ven in this model, we expect to be in the fast tides
egime throughout (almost) the entire planet, which would predict
eff ≈ 10 2 m 

2 s –1 . Thus the increased irradiation and internal heating
ntroduced here results in significantly larger ef fecti ve viscosities,
nd therefore smaller values of Q 

′ 
. 

.3 Tidal dissipation rates in Jupiter and Hot Jupiters 

ow that we have obtained radial profiles of νeff we can use these
o compute the resulting damping of the equilibrium tide and the
ssociated tidal quality factor Q 

′ 
in our planetary models. We follow

he approach described in Barker ( 2020 ) to calculate the equilibrium
idal flow and its resulting dissipation and omit details here. To do so,
e first calculate the irrotational equilibrium tide (more specifically

he dominant quadrupolar l = 2 component with azimuthal wave
umber m = 2) defined in their section 2, since this is likely to be
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Figure 12. Left-hand panel: ef fecti ve viscosity as a function of radius for the Jupiter-like planet with P rot = 10 h, P orb = P tide = 1 d after evolving the model 
for 4.5 Gyr. We show the microscopic viscosity 3 × 10 −7 m 

2 s –1 reproduced from French et al. ( 2012 ) (solid-black) for reference, the MLT prediction in the 
low-frequenc y re gime (solid-blue), the MLT prediction in the fast tides re gime (solid-green), the RMLT prediction in the slow tides re gime (dashed-c yan) and 
the RMLT prediction in the fast tides regime (dotted-red). The fast tides predictions o v erlap re gardless of regime whereas applying RMLT in the slow tides 
regime drastically reduces the ef fecti ve viscosity. Right-hand panel: same but for the inflated Hot Jupiter with P rot = P orb = P tide = 1 d. The Hot Jupiter model 
has more efficient convection and larger effective viscosity in all regimes. 
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he correct one in giant planets. 2 The dissipation of this tidal flow is
omputed assuming an ef fecti ve viscosity that acts like an isotropic
icroscopic kinematic viscosity but with a local value νeff ( r ) to

amp the equilibrium tide. This requires performing the integral 
 v er radius in equation (20) of Barker ( 2020 ) to obtain the dissipation
ate D ν . The only modification here is we account for the rotational
ependence of νeff and ω c as described abo v e, otherwise we employ
heir equation (27) to obtain νeff ( r ) in the various different frequency
egimes (the slightly different pre-factors we have obtained lead to 
egligible differences here). The resulting tidal quality factor is then 
btained by 

 

′ = 

3(2 l + 1) R 

2 l+ 1 

16 πG 

| ω|| A | 2 
D ν

, (53) 

here A ∝ ε is the amplitude of the tidal perturbation (so that the
atio D ν / | A | 2 and hence Q 

′ 
is independent of tidal amplitude in linear

heory), G is the gravitational constant, R is the planetary radius, and
 = 2 π/ P tide . 
To obtain Q 

′ 
for the elliptical instability we can use equation ( 18 )

nd find (Barker & Lithwick 2013a ): 

 

′ ≈ 10 5 

χ/ 0 . 05 

(
m 1 + m 2 

m 2 

)(
P orb 

1 d 

)4 

, (54) 

here χ is fit from our simulations. This is particularly crude because 
t equates the size of our Cartesian box with the planetary radius, but
n the absence of a better approach it provides us with an estimate
hat is broadly consistent with simulations. This represents a ‘non- 
inear’ mechanism of tidal dissipation because Q 

′ 
depends on tidal 

mplitude and has a strong dependence on the orbital period P orb . 
To put our results for these two mechanisms in context, we 

lso compute Q 

′ 
resulting from the dissipation of linearly excited 
 This should be used in preference to the equilibrium tide of for example, 
ahn ( 1989 ) in conv ectiv e re gions of planets since | N 

2 | � ω 

2 (Terquem 

t al. 1998 ). We neglect the action of rotation on this component by 
onsidering Coriolis forces on the equilibrium tide to drive the w ave-lik e 
ide. This equilibrium/dynamical or non-w ave-lik e/w ave-lik e splitting of the 
idal response is formally valid in linear theory for lo w-frequency (relati ve to 
he dynamical frequency) tidal forcing (Ogilvie 2012 ). 

s
p  

e  

a  

r  

w
r
b
i

nertial waves in this planetary model by applying the frequency- 
veraged formalism of Ogilvie ( 2012 ). We follow the approach
utlined in Section 3.1 and equation ( 30 ) of Barker ( 2020 ) to
btain Q 

′ 
in our planetary models, fully accounting for the plan-

tary structure. This prediction for Q 

′ 
provides a tidal frequency- 

ndependent ‘typical level of dissipation’ due to inertial waves 
ccording to linear theory. This method necessarily ignores the 
otentially complicated frequency dependence of the dissipation 
n linear theory and any possible modifications of this by non-
inear effects (e.g. Ogilvie & Lin 2004 ; Astoul & Barker 2022 ).
o we ver, it is thought to be representative of the dissipation of

nertial waves excited by linear tidal forcing, i.e. not via elliptical
nstability (which also excites inertial wa ves, b ut non-linearly in this
egard). 

We show Q 

′ 
in Fig. 13 as a function of tidal period for each

f these mechanisms. The spin frequency is fixed by setting P rot 

 10 h for the Jupiter model in the left-hand panel and P rot = 1 d
or the Hot Jupiter model in the right-hand panel. For the elliptical
nstability, we provide two predictions, one with P orb = 1 d and
he other with P orb = 3 d. Note that when νeff is independent of
idal frequency (in the low-frequency regime), D ν ∝ ω 

2 ∝ P 

−2 
tide and

 

′ ∝ ω 

−1 ∝ P tide , while in the high-frequenc y re gime where νeff ∝
 

−2 ∝ P 

2 
tide , D ν is independent of ω and Q 

′ ∝ ω ∝ P 

−1 
tide . In addition,

e expect Q 

′ 
due to elliptical instability to scale as ω 

3 ∝ P 

−3 
tide and

he frequenc y-av eraged inertial wav e prediction to be independent of
 by definition. 
The left-hand panel of Fig. 13 demonstrates that conv ectiv e 

amping of equilibrium tides by an ef fecti ve viscosity is indeed an
nefficient tidal dissipation mechanism in giant planets and leads 
o large Q 

′ 
. The low tidal frequency regime in dashed-blue and

ashed-magenta for MLT and RMLT, respectively, indicate their 
trongest dissipation when the tidal frequency is large. Note that these 
redictions are calculated using the classical pre-factor of 1/3 for the
f fecti ve viscosity for illustration. These lines indicate that if RMLT
pplies, as is expected, Q 

′ 
is still O(10 9 ) if we neglect the frequency-

eduction of νeff , thus the dissipation (and resulting tidal evolution) is
eak. The combination of low, intermediate and high tidal frequency 

egimes for νeff with the fitted pre-factors dubbed νFIT in solid- 
lue and solid-red indicates that the high tidal frequency regime 
mpacts the ef fecti ve viscosity significantly, particularly when P tide 
MNRAS 524, 2661–2683 (2023) 
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M

Figure 13. Tidal quality factor Q 

′ 
as a function of tidal period for a myriad of mechanisms. Left-hand panel: Jupiter model. Right-hand panel: Inflated Hot 

Jupiter model. In both panels, MLT and RMLT predictions for Q 

′ 
due to conv ectiv e damping of equilibrium tides using an ef fecti ve viscosity with no tidal 

frequency reduction (low frequency regime) are shown in dashed-blue and dashed-magenta, respectively. The frequency-reduced ef fecti ve viscosities in solid 
blue and solid red for MLT and RMLT respectively indicate that the frequency reduction significantly reduces the ef fecti veness of the dissipation. The elliptical 
instability in solid-green and dashed-green lines for two different orbital periods, and the (linear) frequenc y-av eraged inertial wave dissipation in solid-cyan are 
also plotted. Inertial waves are considerably more dissipative than equilibrium tide damping by turbulent viscosity, whether they are linearly or non-linearly (i.e. 
via elliptical instability) excited. Elliptical instability is predicted to be dominant for the shortest tidal periods, and linear excitation of inertial waves is dominant 
for longer periods. The Hot Jupiter model has smaller Q 

′ 
(hence more efficient dissipation) for all dissipation mechanisms due to the larger radius and slower 

rotation. 
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s small. These predictions approximately connect to the frequency-
ndependent MLT and RMLT predictions for large P tide where there
s a transition to the intermediate and low-frequency regimes. The
re-factors obtained using fits to simulations are larger than the
ashed-magenta prediction, thus resulting in a slightly lower Q 

′ 
when

ransitioning into the low tidal frequenc y re gime. This is because the
actor 1/3 often utilized, as plotted here for the MLT and RMLT lines,
s essentially arbitrary, unlike our numerical fits. 

The elliptical instability on a 1-d orbit (solid-green), on the other
and, is an efficient dissipation mechanism, particularly when the
idal frequency is high. It is significantly more ef fecti v e than conv ec-
ive damping of equilibrium tides according to each prediction for
he entire range of tidal periods considered. The elliptical instability
rediction on a 3-d orbit (dashed-green) is weaker than the 1-d orbit
rediction, but would still predict more ef fecti ve dissipation even
han the slow-tides MLT effective viscosity for almost all of the
arameter range considered. The most efficient mechanism in this
odel, except for the very highest tidal frequencies, is the frequency-

veraged dissipation due to inertial waves shown in solid-cyan, which
roduces a Q 

′ = O(10 3 ) for our chosen rotation period. Since the
otation period is known, we would thus predict a typical value 

 

′ ≈ 2 × 10 3 
(

P rot 

10 hr 

)2 

, (55) 

or tidal dissipation due to inertial waves. Indeed, this is sufficiently
issipativ e to e xplain tidal dissipation rates in Jupiter and Saturn
Laine y et al. 2009 , 2012 ; Laine y et al. 2017 ), without requiring any
esonance-locking scenario (e.g. Fuller, Luan & Quataert 2016 ). 

The Hot Jupiter model on the other hand has a larger radius,
tronger convection, and is rotating somewhat more slowly, so it has
uch higher ef fecti ve viscosities and is impacted to a lesser extent

y rotation. As a result, all mechanisms except the dissipation of
linear) inertial waves are more efficient. The elliptical instability
s predicted to be particularly efficient for short orbital periods,
or example, 1 d orbit prediction for Q 

′ = O(10 2 ) when the tidal
eriod is 1 d. The increase in dissipation here due to the elliptical
nstability stems from the large radius of the Hot Jupiter, resulting
n ε ≈ 0.095. Radius inflation and internal heating, as well as the
NRAS 524, 2661–2683 (2023) 
arginally decreased rotation rate, allow the conv ectiv e damping of
quilibrium tides to operate more efficiently than in the Jupiter-like
odel in the left-hand panel. Ho we ver, once again the inertial wave
echanisms are predicted to be substantially more dissipative than

f fecti ve viscosity acting on equilibrium tides. Linear dissipation
f inertial waves occurs with a similar order of magnitude to the
upiter-like model, and is predicted to be dominant for P tide � 2 d. 

 DI SCUSSI ON  A N D  C O N C L U S I O N  

.1 Comparison with previous work 

e find tidal dissipation rates due to the elliptical instability that
re roughly equi v alent to those observed in prior w ork (Bark er
 Lithwick 2013a , b ; Barker 2016 ) when it operates. Indeed, our

fficiency factor χ is consistent with a similar value ( χ ∈ [0.01, 0.1])
nd is independent of Rayleigh number when the elliptical instability
perates. We also potentially observe the ε6 scaling found in Barker
 Lithwick ( 2013a ), and find that if this scaling holds true only the

ery closest Hot Jupiters experience significant tidal dissipation due
o the elliptical instability (because this would ef fecti vely imply a
uch smaller value of χ for realistic ε values). 
The scaling laws we have confirmed using temperature-based

MLT match those obtained from CIA triple balance arguments
e.g. Ingersoll & Pollard 1982 ; Aubert et al. 2001 ; Jones 2015 ;
astine, Wicht & Aubert 2016 ; Guervilly et al. 2019 ; Aurnou et al.
020 ; Bouillaut et al. 2021 , and many others) and the applicability
f these temperature-based scalings reinforce the applicability of
he diffusion-free flux-based scalings confirmed previously using
imulations (Barker et al. 2014 ; Currie et al. 2020 ). We observe the
ransition from RMLT to MLT to begin around Ro c ≈ 0.1 as in
arker et al. ( 2014 ), and find RMLT is the appropriate description of

sufficiently turbulent) convection for Ro c � 0.1. Similar to Guervilly
t al. ( 2019 ) we find sufficiently strongly supercritical (turbulent)
onvection is required for the conv ectiv e length-scale to agree with
he diffusion-free predictions of RMLT. Our results for the length-
cale depend strongly on how it is calculated, but they are (when
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roperly interpreted) not generally consistent with the predictions 
rom the linear onset of convection. 

One caveat to the above is that different methods to calculate the
onv ectiv e length-scale give vastly different results, and simulations 
ust be turbulent enough and sufficiently rotationally constrained to 

btain reasonable agreement with RMLT. We fa v our definitions for
he length-scale based on either the peak or the integrated ‘centroid’ 
avenumber for the heat flux spectrum as a function of horizontal 
av enumber, which giv e better agreement with RMLT than, for

xample, the temperature fluctuation spectrum. The most challenging 
ase for testing RMLT is when measuring the conv ectiv e length-
cale as a function of rotation rate (Ekman number) at constant 
ayleigh number, where only a narrow range of simulations are 

n the appropriate regime (sufficiently turbulent but rotationally 
onstrained). Furthermore, we find that when fixing supercriticality, 
.e. similar to measuring the conv ectiv e length-scale as a function of
aEk 4/3 , the length-scale scales proportional to Ek 1/3 ∝ �−1/3 . While 

his superficially agrees with the linear onset prediction (in which 
he scale is viscously controlled), we demonstrate that this coincides 
ith the diffusion-free prediction of RMLT when supercriticality 

s fixed, and we find a different pre-factor than predicted by the
ormer. Furthermore, we find that the appropriate regime in terms of
he conv ectiv e Rossby number for RMLT to be a valid description
f convection is Ro c < 0.1, with a transition in scaling laws from
MLT to MLT starting at Ro c ≈ 0.1. 
Regarding the tidal frequency dependence of the ef fecti ve viscosity 

f turbulent convection in damping the equilibrium tide, our results 
re consistent with the same three regimes of tidal frequency as
he non-rotating simulations of Duguid et al. ( 2020 ), even though
hey used an oscillating shear flow and we use a more realistic
quilibrium tidal (elliptical) flo w. Ho we v er, we hav e studied rotating
onvection and thus obtained different prescriptions in terms of the 
imensionless parameters that are described well by our heuristic 
pplication of RMLT. Despite these differences, our results are 
onsistent with the intermediate tidal frequency scaling of ( ω c / ω) −1/2 

s Duguid et al. ( 2020 ); Vidal & Barker ( 2020b ). The pre-factors
n the intermediate and high tidal frequency regimes are lower by 
pproximately a factor of 2. Ho we v er, we observ e a transition from
he high tidal frequency to the intermediate tidal frequency at the 
ame value ω / ω c ≈ 5. 

.2 Future work 

ne avenue for future w ork w ould be to perform simulations varying
and �, to fully disentangle the different dependencies on Ro c and 
o ω . Changing γ and � independently would allow the realistic 

cenario of a planet orbiting with a non-zero orbital frequency in 
he inertial frame to be studied. This would be likely to impact the
trength of the elliptical instability as it changes its linear growth 
ate. This would be expected to cause suppression of the elliptical 
nstability for different strengths of conv ectiv e driving (or for a
ifferent ε for fixed Ra). However, we do not expect any of our
onclusions will be substantially modified in this case. 

Furthermore, in our current setup the Cartesian box is situated at 
he poles of the planet, with the gravity and rotation axis both pointing
n the z-direction. The latitudinal location of the box, and thus the
elative directions of gravity and the rotation axis could affect the 
esulting tidal dissipation. If the box is mo v ed to a lower latitude, the
irections of gravity and the rotation axis will be misaligned, causing 
onv ectiv e motions subjected to rapid rotation to change angle (Novi
t al. 2019 ; Currie et al. 2020 ). At lower latitudes, the vortices
ntroduced by rotating convection turn into zonal flows, which could 
odify dissipation due to the elliptical instability as well as the
f fecti ve viscosity of convection. In addition, Currie et al. ( 2020 )
emonstrated that the predictions of RMLT hold from the poles to
id-latitudes, but at low-latitudes deviations were observed due to 

he presence of both zonal flows and because boundary conditions 
onstrain the flow in the latitudinal direction. Hence, future work 
hould focus on obtaining a theoretical understanding of convection 
nd of the ef fecti ve viscosity at mid and low latitudes, in the presence
f strong zonal flows. 
There are strong magnetic fields present in Jupiter, and it is

xpected that Hot Jupiters would also have strong fields. This 
xpectation is supported by observations tentatively inferring that 
 number of Hot Jupiters possess strong magnetic fields (Cauley 
t al. 2019 ). Therefore, it is important to study the inclusion of
agnetic fields, as they could have significant effects on tidal 

issipation. Magnetic fields may prevent LSV formation by the 
lliptical instability, and therefore allow a continuous operation of 
he resulting energy transfers (Barker & Lithwick 2013b ). It is likely
hat they also prevent the formation of the convective LSV (e.g.

affei et al. 2019 ), and if so could allow continuous operation of
he elliptical instability while convection is present in the system, 
otentially allowing for enhanced tidal dissipation. In addition, 
ufficiently strong magnetic fields will modify the properties of the 
onvection and therefore the ef fecti ve viscosity, and it remains to be
een ho w v alid the predictions of Ste venson ( 1979 ) would be in this
ase. 

Also on the topic of magnetic fields, in a similar fashion to
onvection acting as an ef fecti ve viscosity, an ef fecti ve turbulent
agnetic resistivity might arise (Cattaneo & Tobias 2013 ; Tobias &
attaneo 2013 ). The turbulent magnetic resistivity has been explored 
reviously in accretion discs (Lesur & Longaretti 2009 ), but not
n the context of tidal dissipation. It is entirely unknown whether
n ef fecti ve resisti vity acting on a tidal flo w features the same
requency reduction as the ef fecti ve viscosity (as assumed by Wei
022 ), and whether it might be an ef fecti ve dissipation mechanism
f the equilibrium tide for high tidal frequencies. 
Another question lies in the applicability of ef fecti ve turbulent

if fusi vities like the ef fecti ve viscosity and ef fecti ve resisti vity. The
f fecti ve viscosity as calculated here is purely representative of
he interaction of rotating convection with the tidal background 
ow. It is unclear if, for instance, the interaction between inertial
aves generated by the elliptical instability (or more directly by 

idal forcing) and convection can be modelled in the same way.
o studying the interaction of convection with inertial waves, and 
alculating whether (and if so how) this can be modelled using an
f fecti ve viscosity is an important topic for future work. In addition,
he possible role of alternative energy transfer routes for fast tides,
uch terms involving correlations between tidal flow components 
nd gradients of the conv ectiv e flow (which identically vanish in our
odel) should be explored in global models to determine if they are

ver important (e.g. Barker & Astoul 2021 ; Terquem 2021 ). 
A final avenue of future work is related to the analysis of tidal

issipation rates using planetary models. It would be worthwhile 
o modify the equation of state in a manner akin to M ̈uller et al.
 2020 ), which would allow us to obtain an extended dilute core
nd to measure the impact of such a core on tidal dissipation
ates. Furthermore, a stably stratified dilute core might provide an 
mportant additional contribution to tidal dissipation by permitting 
he excitation of internal (inertia-)gravity waves (e.g. Fuller et al. 
016 ; Andr ́e, Mathis & Barker 2019 ; Pontin et al. 2020 ; Dewberry
023 ; Lin 2023 ; Pontin et al. 2023 ). Finally, studying how Q 

′ 

volves with planetary evolution for each of these mechanisms would 
MNRAS 524, 2661–2683 (2023) 
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e worthwhile. For self-consistency, one might then consider also
volving orbital parameters and irradiation fluxes in tandem with the
tructural evolution. 

.3 Conclusion 

e have studied interactions between the elliptical instability and
otating turbulent convection in a local model representing a small
atch of a giant planet (or star), building upon the simulations
nd analysis in Paper 1 . We have found the elliptical instability
o provide time-averaged tidal dissipation rates consistent with an ε3 

caling when it operates (where ε is proportional to the dimensionless
idal amplitude), which would lead to tidal quality factors Q 

′ ∝ P 

4 
orb 

consistently with Barker & Lithwick 2013a , b ; Barker 2016 ). We
nd a dissipation rate sufficient to suggest this tidal mechanism
ould be the dominant one for the very shortest period Hot Jupiters,
ith orbital periods shorter than 2 d. In this work, we find that the
bserv ed efficienc y factor (0.05 ≈ χ � 0.18 as an upper bound,
efined such that in our units the dissipation rate D ≡ χε3 γ 3 )
eems to be independent of the conv ectiv e driving (Rayleigh number)
s long as the elliptical instability operates. Some of our results
re also consistent with a steeper ε6 scaling, which, if robust,
 ould significantly weak en tidal dissipation for realistic values of
, restricting the ef fecti veness of this mechanism except for the very
hortest orbital periods. 

Our simulations have also obtained a sustained energy injection
ate scaling as ε2 for smaller values of ε than those for which
he elliptical instability is observed. This can be interpreted as an
f fecti ve viscosity arising from the interaction between rotating
onvection and the equilibrium tidal flow that is independent of ε
as would be predicted by a linear tidal mechanism). On the other
and, this ef fecti v e viscosity is observ ed to depend on the conv ectiv e
elocity, length - scale and tidal frequency. In this work, we have
btained scaling laws for conv ectiv e v elocities and length - scales,
hich are used to find predictions for the conv ectiv e frequenc y

nd the ef fecti ve viscosity, using both (temperature-based) MLT
nd RMLT prescriptions. We find very good agreement between
he predictions of RMLT and our simulation data. Our simulations
onfirm the applicability of the diffusion-free scalings of RMLT
e.g. Stevenson 1979 ; Barker et al. 2014 ; Aurnou et al. 2020 ;
urrie et al. 2020 ) to describe sufficiently turbulent rapidly rotating
onvection. 

We find that the scaling laws for the ef fecti ve viscosity as a
unction of conv ectiv e v elocity, length-scale and frequenc y – when
he rotational modification of these quantities is accounted for –
reviously found in non-rotating simulations (Duguid et al. 2020 )
argely hold true in our rotating simulations. Our results support the
requency-reduction of the ef fecti ve viscosity for fast tides ( ω c / ω) 2 

hen ω � ω c . We also confirm the presence of the intermediate
requenc y re gime the y identified in our simulations, and that the
ransition to this regime occurs at a similar ratio of ω / ω c ≈ 5.
urthermore, when considering the more realistic flux-based scalings

nstead of temperature-based scalings we find that the MLT and
MLT predictions for the high-frequency (fast tides) regime for the
f fecti ve viscosity are identical and are independent of rotation rate
as long as the heat flux is independent of rotation rate, which is a
easonable first approximation). 

Finally, we employed the MESA code to construct illustrative inte-
ior models of a Jupiter-like and an inflated Hot-Jupiter-like planet,
ubject to Jupiter-like irradiation and Hot Jupiter-like irradiation plus
rtificial interior heating, respectively. We compute the rotational
NRAS 524, 2661–2683 (2023) 

D

odifications of conv ectiv e v elocities and length-scales in these
odels, as well as the modifications of the ef fecti ve viscosity to allow

s to compute tidal dissipation resulting from conv ectiv e damping
f equilibrium tides according to the scaling laws we have derived
nd verified with simulations. In both models (even in inflated short-
eriod Hot Jupiters), we find the conv ectiv e Rossby numbers to be
uch smaller than one, indicating that the convection is strongly

ffected by rotation, therefore motivating our study of this regime in
his paper. We find that for almost all applications to giant planets,
he fast tides regime, in which the tidal frequency is much larger
han the conv ectiv e frequenc y, is highly likely to be the rele v ant
ne. In this regime the ef fecti ve viscosity scales as νeff ∝ ( ω c / ω) 2 .
he resulting tidal quality factors Q 

′ 
for equilibrium tide damping

computed following Barker 2020 ) are estimated to be in excess of
0 9 for tidal periods of interest, and this mechanism is therefore
redicted to be an inef fecti ve one in giant planets. 
On the other hand, we predict the elliptical instability to be efficient

or very short orbital and tidal periods (with Q 

′ ∼ 10 2 in Hot
upiters for periods of order one day), but that it falls off rapidly
ith increasing (tidal and orbital) periods. 
We also compute for the first time Q 

′ 
arising from the frequency-

veraged dissipation due to inertial waves in ‘realistic models’ of
iant planets (following Ogilvie 2012 ; Barker 2020 ). This mecha-
ism assumes these waves to be excited linearly by tidal forcing,
s opposed to non-linearly (with respect to tidal amplitude) by the
lliptical instability. Inertial waves are by far the most efficient mech-
nism studied here, either those excited by the elliptical instability for
hort orbital and tidal periods, or by the linear frequenc y-av eraged
issipation. The latter leads to Q 

′ ≈ 10 3 ( P rot /10 h) 2 for Jupiter-
ike rotation periods, which is consistent with the efficient tidal
issipation rates required to explain the observed orbital migration
f the moons of Jupiter and Saturn (e.g. Lainey et al. 2009 , 2012 ,
here tidal amplitudes are likely to be too small for the elliptical

nstability to operate ef fecti vely). 
All mechanisms except the frequency-averaged inertial wave
echanism are more efficient in the Hot Jupiter model due to its

arger radius, weaker rotation and stronger conv ectiv e driving. This
llows the elliptical instability to be on par or even more efficient
han linearly excited inertial waves in the shortest period Hot Jupiters.

e conclude that inertial wave mechanisms are probably the most
fficient ones for dissipating tidal energy in giant planets, at least
hose without extended stable layers. 
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Figure A1. The heat flux F ( k ⊥ ) (solid and dashed lines) and the vertical 
kinetic energy E z ( k ⊥ ) (dotted lines) spectra as a function of horizontal 
wavenumber k ⊥ . The spectra are plotted at the most extreme values of the 
surv e yed parameter space in Ekman number. The largest Ekman number, Ek 
= 5 × 10 −4.5 , at fixed Ra = 1.3 × 10 8 is plotted in solid-blue and dotted- 
purple, the smallest Ekman number, Ek = 5 × 10 −6 , at fixed Ra = 1.3 ×
10 8 in solid-yellow and dotted-burgundy, and the smallest Ekman number at 
fixed R = 6 in solid-green and dotted-orange. Dashed parts of the heat flux 
spectra indicate ne gativ e heat flux for these scales. 
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PPENDIX  A :  RESOLUTION  

 table of resolutions used for our simulations is given in Table A1 .
igh Rayleigh number simulations were carried out with higher
ertical resolutions. Simulations with higher ellipticities were not
ound to require higher resolutions. In addition, to fully resolve the
eat flux spectrum for calculations of the conv ectiv e length-scale we
pted to use a 2 × 2 × 1 ( L = 2) box, as indicated in the bottom two
olumns of Table A1 . 

The horizontal spectra used in the calculation of the length-scale
re shown in Fig. A1 . Both the heat flux F ( k ⊥ 

) and the vertical
inetic energy E z ( k ⊥ 

) spectra are plotted. The heat fluxes are shown
ith solid (and dashed) lines, and the vertical kinetic energy spectra
ith dotted lines. The spectra from cases with the most extreme
arameters we considered are displayed; the largest Ekman number,
k = 5 × 10 −4.5 , at fixed Ra = 1.3 × 10 8 is plotted in solid-
lue and dotted-purple, the smallest Ekman number, Ek = 5 ×
0 −6 , at fixed Ra = 1.3 × 10 8 in solid-yellow and dotted-burgundy,
nd the smallest Ekman number at fixed R = 6 in solid-green and
otted-orange. The heat flux spectra at small Ekman number contain
ashed parts, indicating ne gativ e heat flux for these k ⊥ 

. The heat flux
ends to be concentrated towards larger wave numbers with broad
istributions. The strong peak in solid-yellow and dotted-burgundy
merges because this simulation is close to onset, and thus strongly
ollows the linear onset wave number. The conventional rule that
he power in the peak of the spectrum must be a factor of at least
0 3 larger than at the anti-aliasing scale is maintained in the kinetic
nergy spectra as well as the heat flux spectra. Our simulations
re therefore likely to be spatially converged in the horizontal
lane. 
The main parameter, in this work, is the energy injection rate

nd the resulting ef fecti ve viscosity. Here, we plot the ef fecti ve
iscosity at the two most extreme parameters used in our simulations
n Fig. A2 . This shows the smallest Ekman number, fixed supercriti-
ality R = 6 and ε = 0.03, and largest Ekman number, fixed Ra = 1.3
NRAS 524, 2661–2683 (2023) 

able A1. Table of resolutions used in the simulations with different 
ayleigh numbers, Ekman numbers, and horizontal box size L x = L y = 4 

unless otherwise specified). The same resolution was used for all ellipticities. 
he square brackets indicate all entries within are multiplied by the factor 5 

n front. 

k = 5 × 10 −5.5 n x , n y n z 

 = −6, −4, −3, −1, −0.8, 0.3, 0.8, 2, 3, 4, 5, 6 256 × 256 96 
 = 7, 8 256 × 256 128 
 = −10, 9, 10, 11, 12, 15 256 × 256 160 
 = 20 256 × 256 224 
a = 1.3 × 10 8 n x , n y n z 
k = 5 × [10 −5.6 , 10 −5.7 , 10 −5.8 , 10 −5.9 ] 256 × 256 96 
k = 5 × 10 −5.4 256 × 256 128 
k = 5 × [10 −5.2 , 10 −5.3 ] 256 × 256 160 
k = 5 × [10 −5 , 10 −5.1 ] 256 × 256 196 
k = 5 × [10 −4.5 , 10 −4.6 , 10 −4.7 , 10 −4.8 , 10 −4.9 ] 256 × 256 128 
 = 6 n x , n y n z 
k = 5 × [10 −5.6 , 10 −5.7 , 10 −5.8 , 10 −5.9 , 10 −6 ] 256 × 256 96 
k = 5 × [10 −5.0 , 10 −5.1 , 10 −5.4 ] 256 × 256 128 
k = 5 × [10 −5.2 , 10 −5.3 ] 256 × 256 160 
 = 6, ε = 0, L x = 2 (to determine l c ) n x , n y n z 
k = 5 × [10 −5 , 10 −5.1 ,..., 10 −5.8 , 10 −5.9 , 10 −6 ] 512 × 512 128 
a = 1.3 × 10 8 , ε = 0, L x = 2 (to determine l c ) n x , n y n z 
k = 5 × [10 −4.5 , 10 −4.6 ,...., 10 −5.8 , 10 −5.9 , 
0 −6 ] 

512 × 512 128 

Figure A2. The ef fecti ve viscosity at largest Ek = 5 × 10 −4.5 , Ra = 1.3 ×
10 8 in blue, orange, yellow and purple and at smallest Ek = 5 × 10 −6 , R = 

6 in green, cyan, burgundy, and black. The ef fecti ve viscosities at Ek = 5 ×
10 −6 are increased by a factor of 100 to offset them for clarity. Apart from 

fluctuations, the ef fecti ve viscosity is unchanged with increased resolution. 
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10 8 and ε = 0.02. Low ellipticities are specifically chosen to a v oid
ursts of the elliptical instability. The ef fecti ve viscosities in these
imulations take different values due to the different Rayleigh and
kman numbers, but are further offset for clarity. There is no change
s we increase the resolution for this quantity at either extreme of
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arameter space, so we conclude that the ef fecti ve viscosities we
easured are numerically converged with our adopted resolutions. 

PPEN D IX  B:  M E S A INLISTS  

he illustrative models in Section 4.2 are based on the MESA test suite
ase make planets . We highlight here changes in the inlist files we
sed to obtain these models. Any parameters not mentioned here are 
nchanged from the test suite default values. The inlist create and 
nlist core are the same for both the Jupiter and Hot Jupiter model: 

inlist create 
max model number = 1020 
initial Y = 0.27 
inlist core 
2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
dlg core mass per step = 0.002d0 
The differences between these models lies in inlist evolve ; for the

upiter model: 
max model number = 2500 
irradiation flux = 50000.d0 
inject uniform extra heat = 0.0d0 
max a g e = 4.5d9 
and for the Hot Jupiter model: 
max model number = 2500 
irradiation flux = 1.d9 
inject uniform extra heat = 0.05d0 
max a g e = 4.5d9 . 
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