Gorma, W, Post, MA, White, J et al. (7 more authors) (2021) Development of Modular Bio-Inspired Autonomous Underwater Vehicle for Close Subsea Asset Inspection. Applied Sciences, 11 (12). 5401. ISSN 2076-3417
Abstract
To reduce human risk and maintenance costs, Autonomous Underwater Vehicles (AUVs) are involved in subsea inspections and measurements for a wide range of marine industries such as offshore wind farms and other underwater infrastructure. Most of these inspections may require levels of manoeuvrability similar to what can be achieved by tethered vehicles, called Remotely Operated Vehicles (ROVs). To extend AUV intervention time and perform closer inspection in constrained spaces, AUVs need to be more efficient and flexible by being able to undulate around physical constraints. A biomimetic fish-like AUV known as RoboFish has been designed to mimic propulsion techniques observed in nature to provide high thrust efficiency and agility to navigate its way autonomously around complex underwater structures. Building upon advances in acoustic communications, computer vision, electronics and autonomy technologies, RoboFish aims to provide a solution to such critical inspections. This paper introduces the first RoboFish prototype that comprises cost-effective 3D printed modules joined together with innovative magnetic coupling joints and a modular software framework. Initial testing shows that the preliminary working prototype is functional in terms of water-tightness, propulsion, body control and communication using acoustics, with visual localisation and mapping capability.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | underwater robotics; biomimetic AUV; biomimetic propulsion; 3D seafloor reconstruction; acoustic communication |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Systems and Design (iESD) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Sep 2021 12:19 |
Last Modified: | 10 Sep 2021 12:19 |
Status: | Published |
Publisher: | MDPI |
Identification Number: | 10.3390/app11125401 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:177389 |