Uh, H-W, Klaric, L, Ugrina, I et al. (3 more authors) (2020) Choosing proper normalization is essential for discovery of sparse glycan biomarkers. Molecular Omics. ISSN 2515-4184
Abstract
Rapid progress in high-throughput glycomics analysis enables the researchers to conduct large sample studies. Typically, the between-subject differences in total abundance of raw glycomics data are very large, and it is necessary to reduce the differences, making measurements comparable across samples. Essentially there are two ways to approach this issue: row-wise and column-wise normalization. In glycomics, the differences per subject are usually forced to be exactly zero, by scaling each sample having the sum of all glycan intensities equal to 100%. This total area (row-wise) normalization (TA) results in so-called compositional data, rendering many standard multivariate statistical methods inappropriate or inapplicable. Ignoring the compositional nature of the data, moreover, may lead to spurious results. Alternatively, a log-transformation to the raw data can be performed prior to column-wise normalization and implementing standard statistical tools. Until now, there is no clear consensus on the appropriate normalization method applied to glycomics data. Nor, systematic investigation of impact of TA on downstream analysis is available to justify the choice of TA. Our motivation lies in efficient variable selection to identify glycan biomarkers with regard to accurate prediction as well as intepretability of the model chosen. Via extensive simulations we investigate how different normalization methods affect the performance of variable selection, and compare their performance. We also address the effect of various types of measurement error in glycans: additive, multiplicative and two-component error. We show that when sample-wise differences are not large row-wise normalization (like TA) can have deleterious effects on variable selection and prediction.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Protected by copyright. Under the terms of the CC-BY 3.0 licence: https://creativecommons.org/licenses/by/3.0/ |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Statistics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 11 Mar 2020 14:45 |
Last Modified: | 25 Jun 2023 22:11 |
Status: | Published online |
Publisher: | Royal Society of Chemistry |
Identification Number: | 10.1039/C9MO00174C |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:158265 |