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Choosing proper normalization is essential for discovery of sparse glycan
biomarkers

Hae-Won Uh, Lucija Klarić, Ivo Ugrina, Gordan Lauc, Age K. Smilde, Jeanine J. Houwing-Duistermaat

Abstract

Rapid progress in high-throughput glycomics analysis enables the researchers to conduct large sample studies. Typi-
cally, the between-subject differences in total abundance of raw glycomics data are very large, and it is necessary to
reduce the differences, making measurements comparable across samples. Essentially there are two ways to approach
this issue: row-wise and column-wise normalization. In glycomics, the differences per subject are usually forced to be
exactly zero, by scaling each sample having the sum of all glycan intensities equal to 100%. This total area (row-wise)
normalization (TA) results in so-called compositional data, rendering many standard multivariate statistical methods
inappropriate or inapplicable. Ignoring the compositional nature of the data, moreover, may lead to spurious results.
Alternatively, a log-transformation to the raw data can be performed prior to column-wise normalization and imple-
menting standard statistical tools. Until now, there is no clear consensus on the appropriate normalization method
applied to glycomics data. Nor, systematic investigation of impact of TA on downstream analysis is available to justify
the choice of TA.

Our motivation lies in efficient variable selection to identify glycan biomarkers with regard to accurate prediction
as well as interpretability of the model chosen. Via extensive simulations we investigate how different normalization
methods affect the performance of variable selection, and compare their performance. We also address the effect
of various types of measurement error in glycans: additive, multiplicative and two-component error. We show that
when sample-wise differences are not large row-wise normalization (like TA) can have deleterious effects on variable
selection and prediction.

Keywords: Glycomics, Normalization, Variable selection, Prediction, Sparsity

1. Introduction

Glycomics is an emerging omics field. The majority of proteins are glycosylated and glycomics changes may well
be a hallmark of human disease [1]. The structural complexity of glycans, however, has slowed down the development
of high-throughput quantification methods, and technical improvements are still ongoing. Keeping pace with tech-
nological progress we here examine appropriate handling of glycomics data in large sample studies. The motivating5

example of the present work is based on data from Orkney Islands in Scotland [2], where we assess prediction of
age from immunoglobulin G (IgG) glycans. Figure 1 shows twenty four glycans bound to IgG measured by ultra-
performance liquid chromatography (UPLC). It is reported that IgG glycosylation appears to be closely linked with
chronological and biological ages [3, 2, 4]. Prior to exploring the potential of glycan biomarkers of ageing, several
steps of data pre-processing are required (Figure 2). Our interest here is to minimize unwanted biases and variances.10

In this paper pre-processing refers to various techniques used for extracting clean data from raw instrumental data, and
pre-treatment to methods that transform the cleaned raw data for downstream statistical analysis [5]. Normalization
of the raw data is needed to transform glycomics measurements or abundances to comparable scales, and improper
normalization methods can significantly impair the data [6, 7]. In this work we systematically investigate the impact
of different normalization methods on variable selection using lasso regression with glycan covariates.15

In general, between-subject differences in total abundance of raw glycomics data are large, and even technical
replicates show substantial differences due to measurement errors. To reduce these differences (or variances), applying
a log-transformation to the cleaned raw data is by far the easiest way, as in other omics data analysis. Traditionally,
however, the difference in total abundance per subject is forced to be exactly zero by scaling each sample to have
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Figure 1: Typical chromatogram of glycans separated by HILIC-UPLC analysis of the IgG glycome. Raw glycan intensities are
computed as areas under the curve of corresponding chromatographic peak (GP1-24).

the sum of all glycan intensities equal to 1 (or 100%). This results in so-called compositional data, also present20

in microbiome data analysis. Until now, there is no clear consensus on the appropriate normalization method for
glycomics data.

The compositional nature of the data renders many standard multivariate statistical methods inappropriate or inap-
plicable, and the complications from such data are well recognized in the statistics literature [8, 9]. For example, one
cannot simply calculate the Pearson’s correlations between two compositional components. To illustrate this problem,25

consider a simple, toy example of only two glycans representing a whole glycome of a person. Because of the con-
straint to the sum of a 100%, when the level of one glycan increases, the level of another must decrease. These two
glycans are therefore negatively correlated [10]. Such changes in correlation structure are shown in Figure 3. In Table
1, we divide the six normalization methods considered here into two classes: row-wise (making samples comparable,
Figure 3(c)–(f)), and column-wise (making glycans comparable, Figure 3(g)–(h)). Moreover, as can be seen in Figure30

3(a), glycans are highly correlated. To avoid overfitting and the multicollinearity problem, penalized regression can
be considered. The effects of column-wise normalization such as centering and scaling will lead to a corresponding
change in the scale of the coefficients and standard errors, but no change in the significance or interpretation. In con-
trast, if the compositional glycan data is used as covariates in regression analysis, the lasso regression should not be
directly applied [11].35

Another important issue to be addressed is measurement error in glycans. Compared to more abundant glycans,
IgG glycans of low-abundance appear to be measured with up to 50% of measurement error, indicating an additive
error (unpublished data). In gene expression data, where measurement error is approximately constant over a range
of intensity levels near zero, it appears to be proportional to intensity level at large intensity levels [13, 14], which
might imply multiplicative error. Since the specific measurement error structure in the real data is not well studied,40

we consider three models: additive, multiplicative, and two-component measurement error in glycan measurements,
the last containing both additive and multiplicative error components. We study the effects caused by measurement
error in our simulation studies. Given that the real correlation structure between glycans is not known, to assess
the influence of different normalizations on discovery of glycan biomarkers we simulated the data to mimic the real
data and simulated association with an outcome. In short, we first generate the glycans that mimic the correlation45

2

Page 2 of 19Molecular Omics

M
ol

ec
ul

ar
O

m
ic

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ar
ch

 2
02

0.
 D

ow
nl

oa
de

d 
on

 3
/1

1/
20

20
 2

:2
7:

55
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/C9MO00174C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9mo00174c


Data acquisition

Raw data

Clean data

Data ready for
analysis

Sample extraction
UPLC analysis

Data pre‐processing

Data pre‐treatment

• Centroiding and binning
• Baseline correction
• Alignment
• Peak picking
• Matching of peaks across 

samples
• Batch correction
• Quality assessment
• etc.

• Normalization
• Centering
• Scaling
• Transformation (log, Box‐

Cox)
• Missing values
• Outliers
• etc.

Figure 2: The flow diagram identifying the steps involved in a preparation of data for statistical analysis.

Table 1: Normalization methods investigated. For details cf. Section 2.1.
Class Normalization Abbreviation Description

Row-wise Total Area TA Each glycan peak is divided by total abundance per
subject, resulting compositional data.

Log-transform of TA logTA To achieve less-skewed distribution. When center-
ing is applied to each sample, it is equivalent to the
centred log-ratio (CLR) transformationa.

Reference Peakb RP Each glycan peak is divided by the most abundant
glycan peak per subject.

Median Quotient MQ To remove the bias due to the relative abundance of
glycan intensities.

Column-wise Median Scaling MS Each glycan peak is subtracted by its median and
divided by the interquartile range (IQR).

Multivariate Quantile
Normalization

MQN Column-wise adaptation of quantile normalization
in gene expression data.

a Aitchison [12] introduced transformations based on ratios: the additive log-ratio transformation (ALR) and the centred
log-ratio transformation (CLR).

b By taking the logarithm of RP, the additive log-ratio (ALR) transformation is obtained.
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structure of real glycan data, namely the log-transformed glycan measurements from the Orkney Complex Disease
Study (ORCADES) [15]. Next, outcome variables are generated assuming that different sets of glycan combinations
are associated with the outcome. In addition, based on different error models the corresponding error-contaminated
datasets are generated. For each of simulated glycan datasets (with or without error) six different normalization
methods are applied, and variable selection is employed. Finally, the impact of normalization on the performance of50

variable selection is assessed via extensive simulations reflecting various scenarios as described in Section 3.
The structure of the paper is as follows. In the next section, a detailed description of the considered normalization

methods is given, followed by discussion on measurement error in glycomics data. In Section 3 we present our simula-
tion study and evaluate the robustness and efficiency of the normalization methods regarding variable selection. Next,
the analysis of glycan measurements from the ORCADES study [15] is considered in Section 4, where glycan variable55

selection is performed with age as an outcome. Finally, in the last section we give some insights and recommendations
based on the conducted simulation study.
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−1.0 −0.5 0.0 0.5 1.0

Median: 0.80
Range (0.37, 0.98)

(a) Clean data

−1.0 −0.5 0.0 0.5 1.0

Median: 0.80
Range (0.37, 0.98)

(b) log (Clean data)

−1.0 −0.5 0.0 0.5 1.0

Median: 0.02
Range (−0.94, 0.89)

(c) TA (Clean data)

−1.0 −0.5 0.0 0.5 1.0

Median: 0.02
Range (−0.94, 0.89)

(d) logTA

−1.0 −0.5 0.0 0.5 1.0

Median: 0.20
Range (−0.81, 0.90)

(e) RP

−1.0 −0.5 0.0 0.5 1.0

Median: −0.07
Range (−0.78, 0.90)

(f) MQ

−1.0 −0.5 0.0 0.5 1.0

Median: 0.80
Range (0.37, 0.98)

(g) MS

−1.0 −0.5 0.0 0.5 1.0

Median: 0.80
Range (0.37, 0.98)

 (g) MQN

Figure 3: Correlation structure of immunoglobulin G glycan data. The heatmap depicts the pair-wise Spearman’s rank correlation coefficients: the colours blue and red
representing negative and positive correlation, respectively. The darker the colour, the stronger the correlation. From left to right and top to bottom: (a) clean data, (b) log
(clean data), (c) TA, (d) logTA, (e) RP, (f) MQ, (g) MS, and (h) MQN. The log-transformation ((a) vs (b), and (c) vs (d)) and column-wise normalisations ((g) and (h)) do not
change the correlation structure:. The row-wise normalizations (c – f) change correlation structure and introduce the negative correlation.
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2. Methods

2.1. Normalization methods

Let us first introduce some notation. Matrices are represented with bold upper case (X) and column vectors as
bold lower case (x) letters. Let an n× p matrix X = (xij), where i = 1, . . . , n represents samples and j = 1, . . . , p
glycan variables of the cleaned raw data. Following the order presented in Table 1, the Total Area normalization (TA)
can be written as follows:

TA(xij) = xij/

p∑
j=1

xij .

From this formula it is obvious that TA introduces constraint that
∑p

j=1 TA(xij) = 1. TA does not entirely correct for
highly skewed distribution of glycans, and can add additional skewing to glycan intensity distributions. Therefore, the
TA-normalized data TA(xij) is often log-transformed

logTA(xij) = log(TA(xij)).

In the compositional data analysis literature further centring of logTA results in the centred log-ratio transformation
[12]. Denoting xs the column vector of the most abundant glycan peak across the samples, the Reference Peak
Normalization (RP) can then be written as

RP(xij) = xij/xis.

RP can generate a very small variance, and additional standardization may be needed [16, 3]. The drawbacks of
RP are: one of the glycan chosen as the reference glycan xs will not be included for the further analysis, and the
choice of the reference glycans is highly subjective. Median quotient (MQ) is a modified version of Probabilistic
Quotient Normalization (PQN) [17]. This method is based on the median fold change of all peak intensities with
respect to a reference spectrum, or most commonly the median of the analysed data. PQN assumes that biologically
interesting concentration changes influence only parts of the spectrum, while dilution effects will affect all signals in
the spectrum[6]. Assuming similar behaviour for the UPLC glycomics data, PQN can be adapted to suite glycomics
data. First, to derive reference glycans, a median of each glycan vector xj is calculated: median(xj), for j =
1, . . . , p. Next, for all glycan values xij the quotient of xij and the appropriate reference glycan is derived: xqij =
xij/median(xj).Then for each sample i, the median of all quotients, xmq

i = median(xqij), is calculated. Finally, all
glycans are divided by the median quotient.

MQ(xij) = xqij/median(xmq
i ).

The next two methods involve column-wise normalization. Considering a highly right-skewed distribution, a log-
transformation is carried out prior to column-wise normalization. For convenience, we use the same notation xij for
the abundance on the log scale of the jth glycan in the ith sample for i = 1, . . . , n and j = 1, . . . , p. Median Scaling
(MS) stands for the non-parametric version of the standardization (centring and scaling), which is sometimes simply
called scaling[18]. In the parametric setting, the procedure is to subtract the mean from each glycan and to divide
by the standard deviation, resulting in zero mean and a standard deviation of one. This often leads to the inflation of
small values. The measurement error being sometimes relatively large for small values, this can enlarge undesirable
effects on further analysis. Hence, we chose to study a more robust version: to subtract the median from each glycan
and divide by the interquartile range (IQR), i.e. for jth glycan

MS(xij) =
{
xij −median(xj)

}
/IQR(xj).

Quantile normalization (QN) is a row-wise normalization proposed by Bolstad et al. [19]. It was derived for gene-60

expression data and the justification for it comes from the idea that only a handful of genes in most studies should
be differentially expressed between samples and therefore the distribution of intensities should be approximately the
same. Any discrepancies between the intensity distributions are due to measurements errors. We adapt QN to glycan
data to achieve the same distribution of glycan intensities across all glycans, which is column-wise normalization. If
two glycan intensities share the same distribution, all quantiles will be identical and, hence, align along the diagonal.65
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This concept is extended to p dimensions in our case, and in fact can be interpreted as multivariate version of rank-
based inverse normal transformation, transformation often used in a genome-wide association study (GWAS) setting.
To make distinction clear we call this method Multivariate Quantile normalization (MQN). Thus, if all p glycan vectors
have the same distribution, then plotting the quantiles in p dimensions gives a straight line along the line given by the
unit vector (1/

√
p, . . . , 1/

√
p). For further computational details we refer to [19].70

2.2. Normalization can change correlation structure
Let X denote an n × p matrix containing glycan measurements for n samples and p glycans. Without loss of

generality we assume that X has a multivariate normal distribution with mean µ and covariance matrix Σ. The
transformation performed by TA on a row (sample) is given by

(x̃1, . . . , x̃p) = (x1, . . . , xp)/(x1 + · · ·+ xp),

introducing the constraint that
∑

j x̃j = 1. This, unfortunately, leads to the problem of losing the possibility to
interpret the correlation coefficients between the original components, commonly referred to as the negative bias
problem [10]. This means that for a p-part composition (x̃1, . . . , x̃p) we have

Cov(x̃1, x̃1 + · · ·+ x̃p) = 0.

Consequently,
Cov(x̃1, x̃2) + . . .+ Cov(x̃1, x̃p) = −Var(x̃1).

Thus at least one of the covariances on the left must be negative, and consequently, there must be at least one negative
element in each row of the raw covariance matrix [20]. Figures 3 ((c)–(f)) show the different patterns of correlation
matrix caused by the different row-wise normalization methods.

2.3. Measurement error models75

Standard regression models assume that the covariates have been measured precisely, or observed without error. In
contrast, the so-called errors-in-variables models or measurement error models are regression models that account for
measurement errors in the independent variables (i.e. covariates, predictors) [21]. We use measurement error models
to generate glycomics datasets that contain measurement errors for our simulation study.

AssumingX has a multivariate normal distribution with mean µ and covariance matrix Σ, we consider a regression80

of a response Y on a predictor or covariate X . Instead of observing X , we observe W : i.e., error-free data (Y ,X)
versus the error-contaminated data (Y ,W ). First, for additive error we have WA = X +U1, where U1 is additive
error independent of X . U1 is normally distributed and has mean zero and covariance matrix ΣU 1

. For simple
linear regression the effect of having additive measurement error in a covariate is said to be an underestimate of the
coefficient, known as the attenuation bias. The effects can vary depending on simple or multiple regression, and85

whether a covariate measured with error is univariate or multivariate. For our simulation study, we consider a diagonal
matrix for uncorrelated error as well as a full matrix for correlated errors. For the multiplicative measurement error,
we haveWM =XU2, whereU2 is multiplicative error. It indicates that the largest observed values are very far from
the true values. If U ∼ N (0,ΣU ) and U2,j = exp(U j), for j = 1, . . . , p, then U2 has a multivariate log-normal
distribution with mean zero and covariance matrix ΣU . Lastly, the two-component model or Rocke-Lorenzato model90

[22, 13] containing both additive and multiplicative error is as follows: WMA =XU2 +U1, where U1 and U2 are
independent errors. In the univariate case, w = xσ2

2 + σ2
1 , and this implies Var(w|x) = x2σ2

2 + σ2
1 . For sufficiently

small values of x, Var(w|x) is similar to σ2
1 , while for sufficiently large values of x, Var(w|x) is similar to σ2

2 [21].
This behaviour in the multivariate case will be studied using simulations.

2.4. Variable selection and prediction95

We consider a multiple linear regression model with n observations on a dependent variable y = (y1, . . . , yn)
>

and p glycans as predictors (or covariates). Let 1n denote a vector of ones of length n, and I an identity matrix. In
matrix notation the linear regression model can be written as:

y =Xβ + ε, (1)
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where y = (y1, . . . , yn)
>, X = (1n,x1,x2, . . . ,xp) is the n × (p + 1) matrix of standardized covariates, β =

(β0, β1, . . . , βp)
> and ε ∼ N (0, σ2

εI). Often when we are given a large number of covariates and due to different
reasons (like the high cost of measuring all these covariates or inability to interpret results with many covariates), we
would like to obtain a reduced set of covariates including only those that are necessary to obtain a “good enough”
model. Also, we may have some domain knowledge telling us that only a few predictors should indeed be important100

for an outcome and therefore our “good enough” model is the best model. In other words, it is frequently assumed that
most regression coefficients βj are zero. Variable selection aims to identify all important variables whose regression
coefficients are not zero and to provide effective estimates of those coefficients. These variable selection features can
lead to finding smaller groups of variables with good prediction accuracy. A potentially simple and effective tool for
variable selection is the stepwise selection. However, it has severe problems in the presence of collinearity.105

Among many methods, to achieve good prediction, to avoid overfitting, and to obtain an interpretable model,
we consider the Least Absolute Shrinkage and Selection Operator (lasso) proposed by Tibshirani [23]. This method
considers both continuous shrinkage and variable selection. The lasso is a penalized least squares procedure that
minimizes RSS = (ỹ −Xβ)>(ỹ −Xβ) where ỹ = y − y1n, subject to the non-differentiable constraint expressed
in terms of the L1 norm. The lasso estimator is given by

β̂ = argmin
β

(ỹ −Xβ)>(ỹ −Xβ) + λ

p∑
j=1

|βj | (2)

where λ ≥ 0 is a tuning parameter. The optimal λ can be selected by k-fold cross-validation, which gives minimum
mean cross-validated error, with common choices of k equal to 5 and 10.

To assess how the results of different scenarios will generalize to external datasets, we investigate performance of
predictive model through estimating accuracy of a predictive model applied to a new independent data. We therefore
first build the model (or perform variable selection) using a training and test dataset, and then validate the model
composed of the selected variables using an external validation dataset. To summarize the results, we report the
numbers of correctly and incorrectly selected variables, and we quantify the prediction error [24], defined by squared
root of the average error in the prediction of y given X for future cases not used in the construction of a prediction
equation. Formally, if µ̂(X) is the predicted values constructed using the present data, the prediction error can be
written as

PE(µ̂) =
√

E[y − µ̂(X)]2, (3)

where the expectation is taken only with respect to the new observation.

3. Simulation study

3.1. Simulation schemes110

i) Generate the glycan data X based on the correlation structure of real data. We simulate 1000 datasets consisting
of 2n (n = 1000, for n model building set and n validation set) observations. The p glycans (p = 24) are drawn
from multivariate normal distribution with mean µ and covariance matrix Σ. Details such as µ and Σ of real
data and X are shown in Supplementary Table S1. To mimic the skewed clean data exp(X) is used.

ii) Generate the error-contaminated glycan data W . We simulate 1000 datasets consisting of 2n observations and p115

glycans generated with three different error models – additive, multiplicative, two-component. The parameters
of the covariance matrix Σ are shown in Table 2. The diagonal elements are denoted as σii = σ2

i , and the
off-diagonal elements as σij (i 6= j). We consider both correlated and uncorrelated covariance matrices.

iii) Simulation of trait (y). Based on linear regression y = Xβ + ε (eq.1) with εi ∼ N (0, 1), and the coefficients β
were set as follows:120

• 3 coefficients fixed: βj∈{1,2,10} = (1, 0.5, 2)> and all other βj 6∈{1,2,10} = 0.

• 6 coefficients fixed: βj∈{1,2,10,15,16,17} = c(1, 0.5, 2, 3, 0.5, 1)> and all others are set to zero.
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Table 2: Parameters in covariance matrix Σ

Error Type Additive Multiplicative
σii σij σii σij

Correlated E1 1/4 1/8 0.1 0.05
E2 1 0.5 0.01 0.005

Uncorrelated E1un 1/4 0 0.1 0
E2un 1 0 0.01 0

The descriptives fo y are given in Supplementary Table S1.

iv) Six normalization methods. For each of the error-free and -contaminated glycan datasets – glycan data generated
from the steps i) and ii) – the TA, logTA, RP, MS, MQ, or MQN transformation is applied.125

v) Regression. Using n training sets we apply lasso penalized regression for variable selection and prediction. The
effect estimates β̂ are compared to the true β.

vi) Prediction. Using n (independent) validation or test sets, β̂ estimates from the variable selection (step v) are
plugged in the model, and the fitted outcome ŷ are compared to the true y.

vi) To assess the performance of variable selection, the average number of the correctly and incorrectly (falsely)130

selected variables is computed. For prediction performance the root mean squared prediction error (eq.3) is
computed.

3.2. Distribution of error-contaminated glycans
We first show how the different error models change the distribution of simulated glycan data. Figure 4 shows the

glycan distributions of such simulated data with and without the correlated error E1 in Table 2. The first row depicts135

the distribution of the highly skewed cleaned raw data, and that of the log-transformed data, which induces relative
symmetry of glycan distributions, still having the same correlation structure. The second row, the left figure shows
the error-free simulated data, SIMdata, based on the real log-transformed data. The rest depicts the distribution of the
simulated data under additive, multiplicative, and two-component error model. While data with additive error showed
similar distribution and correlation patterns, introducing multiplicative error in glycans makes the distribution skewed.140

Moreover, multiplicative error dominates additive error.

3.3. Results of variable selection and prediction of multiple glycan predictors
Table 3 and 4 show the results based on correlated errors under E1 and E2, respectively. The results of each

table are averaged across 1000 simulations: for six normalization methods, two sets of fixed coefficients (3 and 6
βs), and four different error models (data without additional measurement error, and with additive, multiplicative, and145

two-component). For evaluation of the performance of normalization methods we considered (i) the number of the
correctly selected variables, namely 3 or 6, (ii) the number of falsely selected variables (should be zero), and (iii)
prediction error as defined in (3).

The first row of each error model in Table 3, SIMdata, serves as a reference point and can be interpreted as the best
achievable results under the correct model. Even when glycans were simulated without additional measurement error,150

the number of the falsely selected variables was non-zero: 4.46 for 3 fixed coefficients, and 5.12 for 6 fixed coefficients
in average. When additive error in the data, the number of the falsely selected (13.57 and 15.31, respectively) becomes
large, indicating a poor performance of variable selection. When multiplicative error was introduced the number
of both correctly and incorrectly selected variables decreased and prediction error increased. The results of two-
component error were close to those of multiplicative error, which indicates that in this parameter setting multiplicative155

error dominates additive one. Among row-wise normalization methods, TA and logTA perform poorly for variable
selection when multiplicative error was involved. For multiplicative and two-component error the performance of all
normalization methods was comparable; variable selection and prediction became exceedingly difficult. Overall, the
column-wise normalizations outperformed the row-wise normalizations. Moreover, the results from two column-wise
normalization, MS and MQN, were similar to SIMdata under all error models of Table 2.160
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E1: Two−component

Figure 4: Distribution of glycans with correlated error. The green and yellow color depicts the measured and simulated data,
respectively. (i) The first row, colored green, depicts the cleaned and its log-transformed data: the extreme range of abundance
and the highly right skewed distribution of cleaned data can be dealt with the log-transformation of the data. (ii) The second row
shows error-free simulated data based on the log-transformed cleaned data, and the error-contaminated data with additive error
(E1), which showed similar distribution patterns. (iii) The last row multiplicative and two-component error under E1. Introducing
multiplicative error in glycans made the distribution skewed, and the range of abundances larger. The similarity of two distribution
patterns indicates that multiplicative error dominates additive error.
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Table 3: Results of simulation study. Variable selection and prediction of multiple glycans based on the correlated error model E1 in Table 2 using
1000 replicates.

Error 3 beta’sa 6 beta’sb

model Nr.Correctc Nr.Falsed PEe Nr.Correct Nr.False PE
Error-free SIMdataf 3.00 4.46 1.00 5.94 5.12 1.01

MS 3.00 4.47 1.00 5.94 5.10 1.01
MQN 3.00 4.52 1.00 5.94 5.29 1.01

TA 2.83 17.96 1.88 5.18 15.7 3.75
logTA 2.97 19.86 1.83 5.75 17.2 3.62

RP 1.83 13.21 2.33 5.73 17.13 3.63
MQ 1.88 12.99 2.33 5.71 16.19 3.62

Additive SIMdata 3.00 13.57 1.50 5.38 15.31 2.69
MS 3.00 13.63 1.50 5.37 15.32 2.69

MQN 3.00 13.58 1.50 5.37 15.29 2.70
TA 2.42 16.46 2.18 4.91 14.63 4.57

logTA 2.61 17.19 2.16 5.24 15.47 4.50
RP 2.61 17.25 2.16 5.18 15.82 4.50

MQ 2.70 16.98 2.16 5.44 15.56 4.50
Multiplicative SIMdata 2.12 8.90 2.29 3.03 8.50 4.90

MS 2.14 8.89 2.29 3.02 8.46 4.90
MQN 2.12 8.76 2.29 3.03 8.46 4.90

TA 0.29 1.68 2.36 0.45 1.32 5.06
logTA 0.61 6.50 2.35 1.62 6.15 5.02

RP 0.64 4.27 2.36 1.54 4.36 5.05
MQ 0.54 4.14 2.36 1.46 4.09 5.05

Two-component SIMdata 2.06 9.07 2.30 3.01 8.30 4.89
MS 2.06 9.09 2.30 3.02 8.40 4.89

MQN 2.07 9.13 2.30 3.00 8.29 4.89
TA 0.23 1.66 2.36 0.49 1.38 5.05

logTA 0.63 6.68 2.35 1.63 5.93 5.02
RP 0.64 4.37 2.36 1.59 4.19 5.04

MQ 0.55 4.26 2.36 1.57 4.27 5.05
a The glycans 1, 2, and 10 were assumed to have non-zero effects, and all other 21 glycans no effect.
b The glycans 1, 2, 10, 15, 16 and 17 were assumed to have non-zero effects, and all other 18 glycans

no effect.
c The average number of correctly selected glycans.
d The average number of falsely selected glycans, which should be close to zero.
e The root mean squared error of prediction with respect to the new observations.
f The rows in italics show the results of simulated data without additional error in glycans, which can

be interpreted as the best achievable results under the correct models.
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Based on the error model E2 (Table 4), in which multiplicative errors have very small variances compared to
additive ones, the number of incorrectly selected variables for the benchmark, SIMdata, was very large across all error
types, leading to a poor variable selection performance. Prediction error seemed more controllable than under E1.

Table 4: Results of simulation study. Variable selection and prediction of multiple glycans based on the error model E2 in Table 2 using 1000
replicates.

Error 3 beta’sa 6 beta’sb

model Nr.Correctc Nr.Falsed PEe Nr.Correct Nr.False PE
Additive Simdata 2.74 13.91 1.92 5.26 15.02 3.87

TA 1.82 14.00 2.31 3.82 11.57 4.93
logTA 2.26 15.68 2.29 4.62 13.86 4.86

RP 2.34 15.81 2.29 4.84 4.94 4.85
MQ 2.45 15.48 2.29 5.01 14.77 4.85

Multiplicative Simdata 2.65 16.06 1.87 5.07 15.05 3.83
TA 1.83 13.80 2.32 4.00 11.75 4.94

logTA 2.00 16.10 2.28 4.51 14.63 4.84
RP 2.22 15.50 2.29 4.65 14.01 4.86

MQ 2.30 15.28 2.29 4.96 13.96 4.86
Two-component Simdata 2.67 12.25 2.10 4.32 10.99 4.37

TA 1.08 8.77 2.35 2.49 7.58 5.01
logTA 1.66 13.25 2.33 3.64 11.64 4.94

RP 1.81 12.35 2.10 4.05 11.87 4.96
MQ 1.84 12.24 2.10 4.36 12.25 4.96

a The glycans 1, 2, and 10 were assumed to have non-zero effects, and all other 21 glycans no effect.
b The glycans 1, 2, 10, 15, 16 and 17 were assumed to have non-zero effects, and all other 18 glycans

no effect.
c The average number of correctly selected glycans.
d The average number of falsely selected glycans, which should be close to zero.
e The root mean squared error of prediction with respect to the new observations.
f The rows in italics show the results of simulated data without additional error in glycans, which

can be interpreted as the best achievable results under the correct models.

Figure 5 highlights the prediction performance. Since the results of the models including 3 and 6 β’s were similar,
only the performance based on the models with 6 β’s under E1 and E2 is shown. In case of uncorrelated error,165

compared to Table 3, the effects of the error in glycans became more marked (data not shown). Comparison of
the correlated and uncorrelated error based on 6 βs in the model and the two-component error model is depicted in
Supplementary Figure 1. The correlated error caused a poorer performance in variable selection.

To summarize the simulation results, even without additional measurement error the row-wise normalization ap-
peared to perform poorly based on simulated glycan data, in terms of false positives and accurate prediction. Adding170

error caused perturbation of correlation structure, and especially introducing multiplicative error resulted in smaller
number of variables in the model (less correctly- and incorrectly selected variables) and larger prediction error.

4. Data application

Glycans have been previously reported as biomarkers of both chronological and biological ages [4, 3, 2]. These
results were obtained using single-point analysis where the association between each glycan and ageing outcome was175

studied one at a time. Here we aim to detect multiple biomarkers associated with ageing, all in one go. Considering
high correlation shown among glycan variables, to avoid overfitting and to obtain an interpretable model, the lasso
regression [23] in Section 2.4 is applied to the data from Scottish island of Orkney [15].

Glycan traits bound to immunoglobulin G (IgG) (Figure 1) were measured by ultra-performance liquid chromatog-
raphy (UPLC) in 2035 individuals from the ORCADES study, as described in Kristic, et al. [2]. As can be seen in180
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Figure 5: Comparison of prediction performance based on prediction error; the smaller error, the better performance. SIMdata in the
right shows the prediction error without introducing error. (i) Under the error model E1: In the case of perturbation of additive error,
the column-wise normalized (MS and MQN) data performed similarly well. When multiplicative error is present (multiplicative or
two-components), multiplicative error dominates. (ii) The lower row shows the error model E2, which has smaller multiplicative
error than E1. The results show similar prediction error patterns as in (i). Throughout all scenarios, the column-wise normalization
methods outperform the row-wise ones; i.e., smaller prediction error using MS and MQN.
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Figure 1, 24 different glycan peaks are quantified using UPLC, with each glycan peak containing one or more gly-
can structures. Abundance of individual glycan structures in every glycan peak can be found in Pucic, et al. [25].
Participants were men and women (797; 1238) aged between 17 and 100 years (median age, 54). To explore effects
of different normalization on biomarker selection of age, the glycan abundance was transformed using six normaliza-
tion methods shown in Table 1, and additional logRP (log-transformation of RP). To remove strong batch effects in185

the glycomics data, following different normalization, we performed batch correction using empirical Bayes method
[26] as implemented in the ComBat function of sva package for R [27]. To determine the ‘best’ model, applying the
lasso requires selecting a value for the tuning parameter λ in equation (2). For this training and testing of the model,
ten-fold cross-validation was applied to the lasso fits in two third of the dataset. Then, the selected model was re-fitted
for predicting age to the remaining one-third of the data (validation set). For comparison of the performance of each190

normalization, variable selection (in terms of non-zero coefficients) and accuracy in prediction are presented in Table
5.

Here, the results of variable selection is presented as (bold-faced) non-zero coefficients (effect size). For example,
if you use TA normalization, 3 glycans (GP6, GP10, and GP14) will be selected as potential biomarkers with prediction
error 10.52. in contrast, the smallest prediction error (10.36) is obtained using MQN, which selects 5 glycans (GP2,195

GP6, GP10, GP14, and GP24). GP6 and GP14 are the stable associated glycans, which are selected using every
normalization methods. RP and log RP selected 6 and 3 glycans, respectively. However, the absolute effect size of
the ‘stable’ glycans (GP6 and GP14) is ca. 10-fold greater than that of other normalizations, indicating biased results.
Less robust (with smaller effect size), but evidence of association of GP2, GP10, and GP24, can be found using the
majority of the normalization methods (represented by the bold-faced glycans in the first column).200

To summarize, with regard to the accuracy of prediction, MQN showed the smallest prediction error, followed
by logTA and MS. In terms of variable selection, MQ selected the largest number of the variables, thereby failing to
provide sparse model. In particular, the strong effect size of GP14 appears to influence the selection of neighbouring
GP13 and GP15. The other row-wise normalization, TA and RP (including logRP), results in seemingly ‘out-of-range’
values, which lacks model interpretability. Based on the magnitude of the effect sizes as well as variable selection,205

logTA (row-wise) and MS and MQN (both column-wise) seem to agree on the selected glycans.

5. Discussion

It is often claimed that glycans are by their nature compositions, and that percentage of glycan species in the whole
is biologically relevant information [28]. To dispute such claims is not of our interest; our intention is to increase the
awareness of spurious correlations caused by row-wise normalization. In this work, we did not try to disentangle the210

true correlation structure in view of biochemical pathways, but rather demonstrated that choosing one normalization
method can cause several potential issues and problems for downstream analysis. In particular, we focused here on
variable selection by implementing standard statistical learning. When sample-wise differences are non-ignorable,
more investigation for the choice of normalization method is needed. One of the challenges is how to generate or
simulate such data to study statistical properties. Moreover, platform differences between measurement technologies215

such as ultra-performance liquid chromatography (UPLC) or nano liquid chromatography-electrospray ionization-
mass spectrometry (nanoLC-ESI-MS) cannot be ignored. At this moment we do not have sufficient knowledge to deal
with these issues.

In this work we also addressed the effect of possible measurement error present in glycans. In general, introducing
error caused decrease in the strength of correlations, and in particular multiplicative error produced more perturbation220

in correlation structure. In case of two-component error, the tendency of decreasing correlation was more pronounced.
Moreover, even with very small multiplicative error, multiplicative error dominated additive one. Our simulation
study clearly indicates that understanding measurement error structure is crucial, not only to extract real signals from
noise-ridden data, but also to improve accuracy and efficiency of variable selection and prediction for finding glycan
biomarkers. In statistics, measurement error models or errors-in-variables models are regression models that account225

for measurement errors in independent variables [21]. Here, given that the real-life data measurement error is not well
studied, we did not consider how to correct for the attenuation bias in multivariate errors-in-variables regression, but
applied measurement error model to generate datasets contaminated with various types of error. We also included
here an arbitrary correlated error structure, assuming that the highly correlated glycan data will have correlated errors.
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Table 5: The glycan biomarker selection: the bold-faced glycans with non-zero coefficients selected by different normalization methods can be seen
as the robust glycan-age biomarkers.

Glycan Row-wise Column-wise
TA logTA RP logRPa MQ MS MQN

Effect sizes (coefficients)
GP1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP2 0.00 1.36 32.53 12.27 2.26 2.28 2.82
GP3 0.00 0.00 0.00 0.00 0.55 0.00 0.00
GP4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP6 2.06 12.05 123.14 129.56 9.97 13.33 14.14
GP7 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP9 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP10 0.63 2.55 90.74 0.00 8.14 0.00 1.43
GP11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP13 0.00 0.00 -58.53 0.00 -7.38 0.00 0.00
GP14 -1.72 -20.65 -259.85 -212.61 -14.76 -16.56 -20.00
GP15 0.00 0.00 0.00 0.00 -2.76 0.00 0.00
GP16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP18 0.00 0.00 0.00 0.00 -0.63 0.00 0.00
GP19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP23 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GP24 0.00 0.48 9.39 0.00 0.00 1.41 2.14

Variable selectionb 3 5 6 3 8 4 5
Prediction errorc 10.52 10.40 10.45 10.83 10.46 10.40 10.36
a Log-transformation of RP is included, which is equivalent to the ALR transformation [12].
b The number of non-zero coefficients (selected variables).
c As defined in equation (3). The smaller, the better performance.
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Nevertheless, replicates are more and more used in quantification of glycans and it will soon be possible to estimate the230

correlated measurement error for glycan data, which will greatly improve data pre-processing of glycan measurements.
Via simulation we have shown the row-wise normalization methods can have deleterious effects on variable selec-

tion based on multiple regression with the glycans covariates. When applied to the real data, two column-wise (MS and
MQN) and logTA gave similar results in terms of variable selection, prediction, and the magnitude of effect estimates.
For argument’s sake, assuming the glycomics data resembles the microbiome count data and is compositional, what235

are the possibilities to obtain valid results? Although compositional data are proven difficult to handle statistically –
the covariance matrix is not positive-semi-definite (or singular) and the level of the variance depends on the mean of
the distribution – statistical methods for such data have been developed. For principal component analysis, Aitchison
proposed a log linear contrast form to deal with compositional data [29], Regarding the variable selection problem,
Lin et al. [30] addressed this in high-dimensional regression with compositional covariates, motivated by research240

problems arising in the analysis of gut microbiome and metagenomic data. They considered the linear log-contrast
model of Aitchison and Bacon-Shone [31]. Whether any of these approaches would be beneficial for glycomics data
analysis is yet to be determined. In particular, for network analysis where the analysis is based on correlation structure,
it is not at all clear how to perform analysis based on the TA normalized data [32].

With regard to biomarker discovery, it might be a better strategy to analyse glycans jointly. New groups of a245

few glycans, called derived traits, can be constructed, which represent groups of glycan structures that have similar
structural and chemical properties. Up until now, these derived traits often exhibited stronger associations with studied
outcome. Alternatively, we investigated here well-established variable selection and prediction method to discover
multiple glycans that might be jointly responsible for association with disease trait. As shown in application to the
real data (Table 5), the glycan biomarkers with large effect were selected, regardless which method was applied.250

To identify glycans with smaller effect and to avoid false positive and biased results, a few normalization methods
(such as logTA, MS and MQN) can be employed to check the robustness of variable selection. Our simulation study
clearly demonstrated that incorrect pre-processing steps might hamper discovery of reliable biomarkers. Another
non-ignorable issue emerged from simulation study was the large amount of false positives (or falsely selected), due
to the highly correlated nature of glycan measurements. In various scenarios many false positives were found, and255

therefore the task of variable selection failed. Hence, robustness of glycan biomarkers is of utmost importance for
further investigation.

Regardless of the correlation structure or glycan measurement technology used, row-wise normalizations introduce
spurious correlations and can therefore have an effect on downstream statistical analyses. The specific effectsof other
normalization methods on biomarker discovery not assessed in this paper should be studied before being implemented260

in measurement technology specific preprocessing procedures.

6. Conclusion

Modern high-throughput glycomics data measured by UPLC typically shows (i) that the between-subject differ-
ences in total abundance are very large, and (ii) that the glycans are highly correlated. Therefore, glycomics abun-
dances should be normalized to comparable scales, and to avoid overfitting special care is needed for jointly selecting265

multiple biomarkers. Here, we assessed the impact of various normalization methods on glycomics biomarker selec-
tion using lasso regression. Through an extensive simulation study, we demonstrated that the widely used row-wise
total area (TA) normalization method performs poorly compared to the column-wise normalization methods - glycans
were falsely selected (false positives) and the prediction error was large. The column-wise normalization methods,
such as MS and MQN, not only outperformed the row-wise methods but also have an advantage of preserving the270

correlation structure. Measurements error in glycan abundances, moreover, caused perturbation of correlation struc-
ture and diluted the signals in the data, which led to decreased accuracy in variable selection. Further application
to the real data problem of glycan biomarker selection for biological ageing, confirmed these findings. To identify
glycans with smaller association effects and to avoid false positives and biased results, we recommend to apply several
normalization methods, such as logTA, MS and MQN, and report the association results that are detected by majority275

of them. This procedure will assist in identifying robust and reproducible glycan biomarkers.
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