Pankhurst, MJ, Gueninchault, N, Andrew, M et al. (1 more author) (2019) Non-destructive three-dimensional crystallographic orientation analysis of olivine using laboratory diffraction contrast tomography. Mineralogical Magazine, 83 (5). pp. 705-711. ISSN 0026-461X
Abstract
X-ray laboratory diffraction contrast tomography (LabDCT) produces three-dimensional (3D) maps of crystallographic orientation. The non-destructive nature of the technique affords the key benefit of full 3D context of these, and other, in situ measurements. This study is the first to apply the technique to any material other than a metal or silicon. We report the first 3D measurements of the crystallographic orientation of olivine, which also makes this study the first to apply LabDCT to (1) a non-metallic, non-cubic system and (2) geological material. First, we scanned fragments of olivine set in resin alongside glass microbeads using LabDCT and absorption contrast tomography (ACT). Then we reconstructed these data assuming an orthorhombic crystal system. We show that: (1) the regions within the sample that index well according to the orthorhombic system correspond to olivine fragments in the ACT image; (2) crystalline regions not corresponding to olivine are not indexed assuming the same lattice parameters; and (3) the diffraction data discriminates crystalline from non-crystalline materials as expected. Finally, we demonstrate that the method resolves sub-degree orientation differences between distinct regions within individual olivine fragments. We conclude that DCT can be applied to the study of rocks and other crystalline materials, and offers advantages over conventional techniques. We also note that LabDCT may offer a solution to the crystallographic measurement of substances that would otherwise be difficult to measure due to challenges in obtaining a perfect sample polish. Future developments to accommodate larger experimental volumes and additional crystallographic systems within a sample promises to expand the applicability and impact of DCT.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Mineralogical Society of Great Britain and Ireland 2019. This article has been published in a revised form in Mineralogical Magazine https://doi.org/10.1180/mgm.2019.51. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. |
Keywords: | X-ray diffraction tomography; olivine; 3D imaging; non-destructive |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Funding Information: | Funder Grant number AXA Research Fund No External Ref |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Feb 2020 13:17 |
Last Modified: | 20 Feb 2020 15:57 |
Status: | Published |
Publisher: | Cambridge University Press |
Identification Number: | 10.1180/mgm.2019.51 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:156715 |