Krause, AJ orcid.org/0000-0002-9771-8101, Mills, BJW orcid.org/0000-0002-9141-0931, Zhang, S et al. (3 more authors) (2018) Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 9. 4081.
Abstract
Oxygen is essential for animal life, and while geochemical proxies have been instrumental in determining the broad evolutionary history of oxygen on Earth, much of our insight into Phanerozoic oxygen comes from biogeochemical modelling. The GEOCARBSULF model utilizes carbon and sulphur isotope records to produce the most detailed history of Phanerozoic atmospheric O2 currently available. However, its predictions for the Paleozoic disagree with geochemical proxies, and with non-isotope modelling. Here we show that GEOCARBSULF oversimplifies the geochemistry of sulphur isotope fractionation, returning unrealistic values for the O2 sourced from pyrite burial when oxygen is low. We rebuild the model from first principles, utilizing an improved numerical scheme, the latest carbon isotope data, and we replace the sulphur cycle equations in line with forwards modelling approaches. Our new model, GEOCARBSULFOR, produces a revised, highly-detailed prediction for Phanerozoic O2 that is consistent with available proxy data, and independently supports a Paleozoic Oxygenation Event, which likely contributed to the observed radiation of complex, diverse fauna at this time.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2018. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Biogeochemistry; Carbon cycle; Element cycles; Palaeoclimate |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Funding Information: | Funder Grant number Royal Society WM150108 NERC (Natural Environment Research Council) NE/P013627/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 29 Aug 2018 14:43 |
Last Modified: | 18 May 2021 15:25 |
Status: | Published |
Publisher: | Springer Nature |
Identification Number: | 10.1038/s41467-018-06383-y |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:135069 |