Generative AI for Software Metadata: Overview of the Information Retrieval in Software Engineering Track at FIRE 2023

This is the latest version of this eprint.

Majumdar, S. orcid.org/0000-0003-3935-4087, Paul, S., Dave, B. et al. (6 more authors) (2023) Generative AI for Software Metadata: Overview of the Information Retrieval in Software Engineering Track at FIRE 2023. In: Ghosh, K., Mandl, T., Majumder, P. and Mitra, M., (eds.) Working Notes of FIRE 2023 - Forum for Information Retrieval Evaluation (FIRE-WN 2023). FIRE 2023 - Forum for Information Retrieval Evaluation (FIRE-WN 2023), 15-18 Dec 2023, Goa, India. CEUR Workshop Proceedings, Aachen, Germany, pp. 598-604. ISSN: 1613-0073.

Abstract

Metadata

Item Type: Proceedings Paper
Authors/Creators:
Editors:
  • Ghosh, K.
  • Mandl, T.
  • Majumder, P.
  • Mitra, M.
Copyright, Publisher and Additional Information:

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Keywords: bert, GPT-2, Stanford POS Tagging, neural networks, abstract syntax tree
Dates:
  • Published: 15 December 2023
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds)
Date Deposited: 06 Feb 2026 16:08
Last Modified: 06 Feb 2026 16:11
Published Version: https://ceur-ws.org/Vol-3681/
Status: Published
Publisher: CEUR Workshop Proceedings
Open Archives Initiative ID (OAI ID):

Available Versions of this Item

Export

Statistics