Baltes, C.A. orcid.org/0000-0002-3596-1915, Nolle, F., Kaiser, K.M. et al. (5 more authors) (2025) Modulation of cellular adhesion, contractility, and migration by MiuA: a comprehensive analysis of its biomechanical impact. Plos One, 20 (9). e0330071.
Abstract
Cellular adhesion and contractility are essential for cell movement. In this study, we investigated the effects of actin stabilization on adhesion properties, contractility, and cell migration. For this, we used the recently synthesized actin stabilizer miuraenamide A (MiuA), which has been discussed as a more reliable alternative to the otherwise commonly used actin stabilizer jasplakinolide. We investigated the number and size of focal adhesions in RPE-1 cells and used single-cell force spectroscopy to evaluate the adhesion properties of those cells after MiuA treatment. We showed that MiuA increases the number of focal adhesions while decreasing their size and reduces adhesion energy and force. Additionally, we investigated its effects on the contractility of RPE-1 cells by measuring their contractile energy using pattern-based contractility screening (PaCS). We found no significant change in contractility after MiuA treatment. Finally, we confined RPE-1 cells in PDMS microchannels and analyzed their migration after treatment with MiuA, showing that neither their speed nor their persistence is affected by MiuA. To check that these effects are not specific to RPE-1 cells, we also analyzed the effects of MiuA treatment in MEF cells and neutrophils. Both MEF cells and neutrophils showed the same results as the RPE-1 cells. Our measurements indicate that, although altering focal adhesions significantly reduces adhesion, it does not impact cell contractility. This finding also clarifies why amoeboid migration, which operates independently of adhesion, remains unaffected. Additionally, it explains the previously observed reduction in mesenchymal migration, which relies on adhesion-based mechanisms.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2025 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematical and Physical Sciences |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Sep 2025 10:58 |
Last Modified: | 17 Sep 2025 10:58 |
Status: | Published |
Publisher: | Public Library of Science (PLoS) |
Refereed: | Yes |
Identification Number: | 10.1371/journal.pone.0330071 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:231596 |