Lane, B.J., Dionysopoulou, M., Yan, N. et al. (3 more authors) (2025) The mechanosensitive channel YbiO has a conductance equivalent to the largest gated pore. Structure, 33 (4). 652-662.E3. ISSN 0969-2126
Abstract
Bacterial mechanosensitive channels are divided into large (MscL) and small (MscS-like) conductance families. The function of MscS and MscL is to protect cells against osmotic shock by acting as pressure safety valves. Within the MscS-like family, E. coli encodes much larger channels, such as YbiO, MscK, and MscM, but their physiological role remains unclear. Compared to MscL their conductances are reported as 3–10 times lower. We show that YbiO can achieve a conductance of ∼3 nS, and an equivalent pore opening of > 25 Å in diameter, equaling the known largest gated pore, MscL. We determine a cryoelectron microscopy (cryo-EM) structure of YbiO in a sub-open conformation, demonstrating the existence of multiple substates. One substate is consistent with the pore opening extent of our structure and the other matches states previously thought to resemble full openings. Our findings demonstrate surprising capabilities, hinting at new physiological roles for YbiO and potentially other MscS-like channels.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Biomedical Sciences (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 16 Jun 2025 11:03 |
Last Modified: | 16 Jun 2025 11:03 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.str.2025.01.014 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:227831 |