Examining the limitations of computational rumor detection models trained on static datasets

Mu, Y., Song, X. orcid.org/0000-0002-4188-6974, Bontcheva, K. orcid.org/0000-0001-6152-9600 et al. (1 more author) (2024) Examining the limitations of computational rumor detection models trained on static datasets. In: Calzolari, N., Kan, M-Y., Hoste, V., Lenci, A., Sakti, S. and Xue, N., (eds.) 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings. 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 20-25 May 2024, Torino, Italy. ELRA and ICCL , pp. 6739-6751. ISBN 978-2-493814-10-4

Abstract

Metadata

Item Type: Proceedings Paper
Authors/Creators:
Editors:
  • Calzolari, N.
  • Kan, M-Y.
  • Hoste, V.
  • Lenci, A.
  • Sakti, S.
  • Xue, N.
Copyright, Publisher and Additional Information:

© 2024 ELRA Language Resource Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-commercial Licence (https://creativecommons.org/licenses/by-nc/4.0/).

Keywords: Rumor Detection; Computational Social Science; Computational Misinformation Analysis
Dates:
  • Published: May 2024
  • Published (online): May 2024
Institution: The University of Sheffield
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield)
Depositing User: Symplectic Sheffield
Date Deposited: 13 Feb 2025 15:25
Last Modified: 14 Feb 2025 09:42
Published Version: https://aclanthology.org/2024.lrec-main.595/
Status: Published
Publisher: ELRA and ICCL
Refereed: Yes
Related URLs:
Open Archives Initiative ID (OAI ID):

Download

Export

Statistics