Mu, Y., Dong, C., Bontcheva, K. orcid.org/0000-0001-6152-9600 et al. (1 more author) (2024) Large language models offer an alternative to the traditional approach of topic modelling. In: Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), 20-25 May 2024, Torino, Italy. ELRA and ICCL , pp. 10160-10171. ISBN 978-2-493814-10-4
Abstract
Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensive text corpora. To this end, we introduce a framework that prompts LLMs to generate topics from a given set of documents and establish evaluation protocols to assess the clustering efficacy of LLMs. Our findings indicate that LLMs with appropriate prompts can stand out as a viable alternative, capable of generating relevant topic titles and adhering to human guidelines to refine and merge topics. Through in-depth experiments and evaluation, we summarise the advantages and constraints of employing LLMs in topic extraction.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 ELRA Language Resource Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-commercial Licence (https://creativecommons.org/licenses/by-nc/4.0/). |
Keywords: | Large Language Models; Topic Modelling; LLM-driven Topic Extraction; Evaluation Protocol |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 13 Feb 2025 15:07 |
Last Modified: | 14 Feb 2025 09:43 |
Published Version: | https://aclanthology.org/2024.lrec-main.887/ |
Status: | Published |
Publisher: | ELRA and ICCL |
Refereed: | Yes |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223237 |