Amini Pishro, A., Zhang, S., L’Hostis, A. et al. (7 more authors) (2024) Machine learning-aided hybrid technique for dynamics of rail transit stations classification: a case study. Scientific Reports, 14. 23929. ISSN 2045-2322
Abstract
Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model’s predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
Keywords: | Rail Transit Station Classification; Transit Oriented Development; Machine Learning algorithms; Clustering methods; Regression models |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > SWJTU Joint School (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 07 Feb 2025 14:06 |
Last Modified: | 07 Feb 2025 14:06 |
Status: | Published |
Publisher: | Springer Nature |
Identification Number: | 10.1038/s41598-024-75541-8 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:222983 |
Download
Licence: CC-BY-NC-ND 4.0