Sitch, A.J., Dinnes, J., Hewison, J. et al. (3 more authors) (2024) Optimising research investment by simulating and evaluating monitoring strategies to inform a trial: a simulation of liver fibrosis monitoring. BMC Medical Research Methodology, 24 (1). 315. ISSN 1471-2288
Abstract
Background
The aim of the study was to investigate the development of evidence-based monitoring strategies in a population with progressive or recurrent disease. A simulation study of monitoring strategies using a new biomarker (ELF) for the detection of liver cirrhosis in people with known liver fibrosis was undertaken alongside a randomised controlled trial (ELUCIDATE).
Methods
Existing data and expert opinion were used to estimate the progression of disease and the performance of repeat testing with ELF. Knowledge of the true disease status in addition to the observed test results for a cohort of simulated patients allowed various monitoring strategies to be implemented, evaluated and validated against trial data.
Results
Several monitoring strategies ranging in complexity were successfully modelled and compared regarding the timing of detection of disease, the duration of monitoring, and the predictive value of a positive test result. The results of sensitivity analysis showed the importance of accurate data to inform the simulation. Results of the simulation were similar to those from the trial.
Conclusion
Monitoring data can be simulated and strategies compared given adequate knowledge of disease progression and test performance. Such exercises should be carried out to ensure optimal strategies are evaluated in trials thus reducing research waste. Monitoring data can be generated and monitoring strategies can be assessed if data is available on the monitoring test performance and the test variability. This work highlights the data necessary and the general method for evaluating the performance of monitoring strategies, allowing appropriate strategies to be selected for evaluation. Modelling work should be conducted prior to full scale investigation of monitoring strategies, allowing optimal monitoring strategies to be assessed.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. Open Access: This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
Keywords: | Monitoring; Surveillance; Tests; Biomarkers; Liver disease |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Medicine and Population Health |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 09 Jan 2025 15:14 |
Last Modified: | 09 Jan 2025 15:14 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1186/s12874-024-02425-w |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:221265 |