Ahmed, N., Smith, P.J. and Morley, N.A. orcid.org/0000-0002-7284-7978 (2024) Inkjet printing magnetostrictive materials for structural health monitoring of carbon fibre-reinforced polymer composite. Sensors, 24 (14). 4657. ISSN 1424-8220
Abstract
Inkjet printing of magnetic materials has increased in recent years, as it has the potential to improve research in smart, functional materials. Magnetostriction is an inherent property of magnetic materials which allows strain or magnetic fields to be detected. This makes it very attractive for sensors in the area of structural health monitoring by detecting internal strains in carbon fibre-reinforced polymer (CFRP) composite. Inkjet printing offers design flexibility for these sensors to influence the magnetic response to the strain. This allows the sensor to be tailored to suit the location of defects in the CFRP. This research has looked into the viability of printable soft magnetic materials for structural health monitoring (SHM) of CFRP. Magnetite and nickel ink dispersions were selected to print using the JetLab 4 drop-on-demand technique. The printability of both inks was tested by selecting substrate, viscosity and solvent evaporation. Clogging was found to be an issue for both ink dispersions. Sonicating and adjusting the jetting parameters helped in distributing the nanoparticles. We found that magnetite nanoparticles were ideal as a sensor as there is more than double increase in saturation magnetisation by 49 Am2/kg and more than quadruple reduction of coercive field of 5.34 kA/m than nickel. The coil design was found to be the most sensitive to the field as a function of strain, where the gradient was around 80% higher than other sensor designs. Additive layering of 10, 20 and 30 layers of a magnetite square patch was investigated, and it was found that the 20-layered magnetite print had an improved field response to strain while maintaining excellent print resolution. SHM of CFRP was performed by inducing a strain via bending and it was found that the magnetite coil detected a change in field as the strain was applied.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | magnetostriction; magnetite; nickel; ink dispersion; inkjet printing; JetLab 4 |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Funding Information: | Funder Grant number Engineering and Physical Sciences Research Council EP/P02470X/1 Engineering and Physical Sciences Research Council EP/P025285/1 Engineering and Physical Sciences Research Council EP/S019367/1 Engineering and Physical Sciences Research Council EP/R00661X/1 DEFENCE SCIENCE AND TECHNOLOGY LABORATORY DSTLX1000139687 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 01 Aug 2024 09:43 |
Last Modified: | 10 Oct 2024 11:27 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/s24144657 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:215281 |