Stefanini, L., Walkley, B. orcid.org/0000-0003-1069-1362 and Provis, J.L. (2024) Basic oxygen furnace (BOF) slag as an additive in sodium carbonate-activated slag cements. Materials and Structures, 57 (7). 153. ISSN 1359-5997
Abstract
Basic oxygen furnace slag (BOFS) is a high-volume waste resulting from the production of steel from pig iron. Due to its high free lime content, BOFS is difficult to recycle and/or include into conventional cement systems. Alkali-activation technology offers a pathway to transform industrial wastes such as BOFS into low-carbon cements. Alternative precursors for cement systems are needed as the reliance on commonly used materials like ground granulated blast furnace slag (GGBFS) is becoming unsustainable due to decreasing availability. This study investigates alkali-activated cements incorporating 20 and 30 wt.% of naturally weathered BOFS as a replacement for GGBFS, in both sodium silicate- and sodium carbonate-activated systems. A fraction of BOFS subject to mechanical activation is compared against the untreated BOFS in the 20 wt.% systems. It is observed that in naturally weathered BOFS, a significant portion of the free-lime is found to convert to portlandite, which accelerates alkali-activation kinetics. In sodium silicate-activated systems, the high pH of the activator results in incomplete reaction of the portlandite present in BOFS. The sodium carbonate-activated system shows near complete conversion of portlandite, causing an acceleration in the kinetics of reaction, setting, and hardening. These findings confirm the viability of sodium carbonate activated GGBFS-based systems with only a minor loss in strength properties. BOFS can be utilised as a valuable cement additive for the production of sustainable alkali-activated cements utilising sodium carbonate as a less carbon-intensive activator solution than the more commonly used sodium silicate. Mechanical activation of BOFS offers further optimisation potential for alkali-activation.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | BOF slag; GGBFS; Alkali-activation; Mechanical activation; Sodium carbonate |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 23 Jul 2024 09:36 |
Last Modified: | 23 Jul 2024 09:36 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1617/s11527-024-02425-8 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:215043 |