Thornton, S. (2024) Potential of stable isotope analysis to deduce anaerobic biodegradation of ethyl tert-butyl ether (ETBE) and tert-butyl alcohol (TBA) in groundwater: a review. Environmental Science and Pollution Research, 31 (11). pp. 16150-16163. ISSN 0944-1344
Abstract
Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC −0.7 to −1.7‰, εH −11 to −73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Gasoline ether oxygenates; Tertiary alcohols; Isotopic fractionation; Compound-specific stable isotope analysis; Position-specific stable isotope analysis; Natural attenuation |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Funding Information: | Funder Grant number SHELL GLOBAL SOLUTIONS (UK) 4550196438 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 09 Feb 2024 12:03 |
Last Modified: | 11 Nov 2024 13:16 |
Status: | Published |
Publisher: | Springer |
Refereed: | Yes |
Identification Number: | 10.1007/s11356-024-32109-3 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:208835 |