Abbasi, M.N., Aziz, A., AlJaloud, K. et al. (6 more authors) (2023) Design and optimization of a transparent and flexible MIMO antenna for compact IoT and 5G applications. Scientific Reports, 13. 20620. ISSN 2045-2322
Abstract
This work presents an optically transparent and flexible MIMO antenna that features two square patch elements placed in close proximity, aiming to meet the demands of compactness, flexibility, optical transparency, and visual appeal for IoT applications and future 5G wireless communication. The design includes a simple offset fed configuration to achieve the required isolation and impedance matching. It simplifies the process of creating closely spaced transparent MIMO antenna configurations. By optimizing and analyzing this structure, the antenna achieves better isolation and diversity gain performance, even when the patch elements are positioned very close to each other. To achieve optical transparency and flexibility, the antenna uses thin polyethylene terephthalate (PET) material as a substrate, which is a thermoplastic polymer resin from the polyester family. The wired metal mesh parameters for conducting parts of the MIMO antenna and offset position of the feed are carefully optimized to achieve required optical transparency, isolation, impedance matching and radiation performance without any complex decoupling or impedance matching network.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Communications Engineering; Engineering; Electronics, Sensors and Digital Hardware |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 05 Dec 2023 11:43 |
Last Modified: | 29 Jan 2024 09:41 |
Status: | Published |
Publisher: | Nature Research |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-023-47458-1 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:205986 |