Xiao, C., Van Vliet, S., Bliem, R. et al. (2 more authors) (2023) Electrochemically-stimulated nanoscale mechanochemical wear of silicon. Friction, 11 (11). pp. 2142-2152. ISSN 2223-7690
Abstract
Mechanochemical reactions at the sliding interface between a single-crystalline silicon (Si) wafer and a silica (SiO2) microsphere were studied in three environmental conditions: humid air, potassium chloride (KCl) solution, and KCl solution with an applied voltage. Compared to that from humid air, mechanochemical material removal from the silicon surface increased substantially in the KCl-immersed condition, and further increased when electrochemistry was introduced into the tribological system. By measuring the load dependence of the material removal rate and analyzing the results using a mechanically assisted Arrhenius-type kinetic model, the activation energy (Ea) and the mechanical energy (Em), by which this energy is reduced by mechanical activation, were compared qualitatively under different environmental conditions. In the KCl-immersed condition, mechanochemistry may decrease the required effective energy of reactions (Eeff = Ea − Em) and promote material removal mainly through improved catalysis of the mechanochemical reactions facilitated by greater availability of water molecules compared to the humid air condition. Thus, the effectiveness of the mechanochemistry is improved. In the electrochemical condition, electrochemically-accelerated oxidation of the silicon surface was confirmed by the X-ray photoelectron spectroscopy (XPS) characterization. The results strongly suggest that electrochemistry further stimulates mechanochemical reactions primarily by increasing the initial energy state of the surface via the facilitated formation of interfacial bonding bridges, i.e., a surface oxidation/hydroxylation process.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The author(s) 2023. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | spherical contact; adhesive wear; normal loading; power law |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 22 Aug 2023 12:51 |
Last Modified: | 22 Aug 2023 12:51 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s40544-023-0764-4 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:202603 |