Bellantuono, I., Mortiboys, H. orcid.org/0000-0001-6439-0579, Rocha, E. et al. (17 more authors) (2023) Aging, Parkinson’s disease, and models: what are the challenges? Aging Biology, 1. pp. 1-30. ISSN 1474-9718
Abstract
Parkinson’s disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD. However, the role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including cell models, toxin-induced models, and genetic models in rodents and nonhuman primates (NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain some aging features, but their characterization, particularly of aging markers and reproducibility of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models indicates an association, but this is likely in conjunction with other disease drivers. The biggest barrier to drawing firm conclusions is that each model lacks full characterization and appropriate time-course assessments. There is a need to systematically investigate whether aging increases the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of cell models. We propose that a significant investment in time and resources, together with the coordination and sharing of resources, knowledge, and data, is required to accelerate progress in understanding the role of biological aging in PD development and improve the reliability of models to test interventions.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | ©2023 by the Aging Biology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Human Metabolism (Sheffield) The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Oncology (Sheffield) The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Medicine and Population Health |
Funding Information: | Funder Grant number MICHAEL J FOX FOUNDATION MJFF-022769 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 14 Aug 2023 10:00 |
Last Modified: | 14 Aug 2023 10:00 |
Published Version: | http://dx.doi.org/10.59368/agingbio.20230010 |
Status: | Published |
Publisher: | Aging Biology LLC |
Refereed: | Yes |
Identification Number: | 10.59368/agingbio.20230010 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:202372 |