Pedrazzini, S., Pek, M.E., Ackerman, A.K. et al. (11 more authors) (2023) Effect of substrate bed temperature on solute segregation and mechanical properties in Ti–6Al–4V produced by laser powder bed fusion. Metallurgical and Materials Transactions A, 54 (8). pp. 3069-3085. ISSN 1073-5623
Abstract
Titanium alloys are particularly sensitive to temperature during additive manufacturing processes, due to their dual phase microstructure and sensitivity to oxygen uptake. In this paper, laser powder bed fusion (LPBF) was used in conjunction with a heated substrate bed at 100 °C, 570 °C and 770 °C to produce specimens of Ti–6Al–4V, to investigate the change in mechanical properties and segregation of alloying elements. An initial increase in ductility was observed when increasing the temperature from 100 °C to 570 °C, followed by a significant loss in ductility when samples were produced at 770 °C. A suite of multi-scale characterisation techniques revealed that the as-printed microstructure was drastically different across the range of temperatures. At 100 °C, α + α′ phases were identified. Deformation twinning was extensively observed in the a phase, with Al and V segregating at the twin interfaces. At 570 °C (the most ductile sample), α′, α and nano-particles of β were observed, with networks of entangled dislocations showing V segregation. At 770 °C, no martensitic α′ was identified. The microstructure was an α + β microstructure and an increased volume fraction of tangled dislocations with localised V segregation. Thermodynamic modelling based on the Gibbs-free energy of formation showed that the increased V concentration at dislocations was insufficient to locally nucleate β phase. However, b-phase nucleation at grain boundaries (not dislocations) caused pinning of grain boundaries, impeding slip and leading to a reduction in ductility. It is likely that the increased O-content within specimens printed at increased temperatures also played a key role in high-temperature embrittlement. Building operations are therefore best performed below sub-transus temperatures, to encourage the growth of strengthening phases via solute segregation, and the build atmosphere must be tightly controlled to reduce oxygen uptake within the samples.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Funding Information: | Funder Grant number Engineering and Physical Sciences Research Council EP/P006566/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/P006566/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 05 Jun 2023 13:40 |
Last Modified: | 10 Jul 2023 16:12 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s11661-023-07070-4 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:199707 |