Sherwood, SC, Webb, MJ, Annan, JD et al. (22 more authors) (2020) An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58 (4). e2019RG000678. ISSN 8755-1209
Abstract
We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S . This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density (PDF) for S given all the evidence, including tests of robustness to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6‐3.9 K for our Baseline calculation, and remains within 2.3‐4.5 K under the robustness tests; corresponding 5‐95% ranges are 2.3‐4.7 K, bounded by 2.0‐5.7 K (although such high‐confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent, and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S , in particular using comprehensive models and process understanding to address limitations in the traditional forcing‐feedback paradigm for interpreting past changes.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020. American Geophysical Union. All Rights Reserved. This is the peer reviewed version of the following article: Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678, which has been published in final form at https://doi.org/10.1029/2019RG000678. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited. |
Keywords: | Bayesian methods; Climate; climate sensitivity; global warming |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 Aug 2020 11:29 |
Last Modified: | 08 May 2024 01:21 |
Status: | Published |
Publisher: | American Geophysical Union (AGU) |
Identification Number: | 10.1029/2019rg000678 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:164247 |