
There is a more recent version of this eprint available. Click here to view it.
Siskind, DE, Jones Jr., M, Drob, DP et al. (7 more authors) (2018) On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low latitude thermospheric nitric oxide. Annales Geophysicae Discussions. ISSN 0992-7689
Abstract
We use data from two NASA satellites, the Thermosphere Ionosphere Energetics and Dynamics (TIMED) and the Aeronomy of Ice in the Mesosphere (AIM) satellites in conjunction with model simulations from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) to elucidate the key dynamical and chemical factors governing the abundance and diurnal variation of nitric oxide (NO) at near solar minimum conditions and low latitudes. This analysis was enabled by the recent orbital precession of the AIM satellite which caused the solar occultation pattern measured by the Solar Occultation for Ice Experiment (SOFIE) to migrate down to low and mid latitudes for specific periods of time. We use a month of NO data collected in January 2017 to compare with two versions of the TIME-GCM, one driven solely by climatological tides and analysis-derived planetary waves at the lower boundary and free running at all other altitudes, while the other is constrained by a high-altitude analysis from the Navy Global Environmental Model (NAVGEM)up to the mesopause. We also compare SOFIE data with a NO climatology from the Nitric Oxide Empirical Model (NOEM). Both SOFIE and NOEM yield peak NO abundances of around 4×107cm−3; however, the SOFIE profile peaks about 6-8 km lower than NOEM. We show that this difference is likely a local time effect; SOFIE being a dawn measurement and NOEM representing late morning/near noon. The constrained version of TIME-GCM exhibits a low altitude dawn peak while the model that is forced solely at the lower boundary and free running above does not. We attribute this difference due to a phase change in the semi-diurnal tide in the NAVGEM-constrained model causing descent of high NO mixing ratio air near dawn. This phase difference between the two models arises due to differences in the mesospheric zonal mean zonal winds. Regarding the absolute NO abundance, all versions of the TIME-GCM overestimate this. Tuning the model to yield calculated atomic oxygen in agreement with TIMED data helps, but is insufficient. Further, the TIME-GCM underestimates the electron density [e-] as compared with the International Reference Ionosphere empirical model. This suggests a potential conflict with the requirements of NO modeling and [e-] modeling since one solution typically used to increase model [e-] is to increase the solar soft X ray flux which would, in this case, worsen the NO model/data discrepancy.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Author(s) 2018. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 17 Jun 2020 12:59 |
Last Modified: | 17 Jun 2020 12:59 |
Status: | Published |
Publisher: | Copernicus |
Identification Number: | 10.5194/angeo-2018-112 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161948 |
Available Versions of this Item
-
On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low latitude thermospheric nitric oxide. (deposited 17 Jun 2020 12:59)
[Currently Displayed]
- On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric nitric oxide. (deposited 29 Jan 2019 11:23)