Burrows, KE orcid.org/0000-0002-5485-6256, McGrath, SE, Kulmaczewski, R orcid.org/0000-0002-3855-4530 et al. (3 more authors) (2017) Spin States of Homochiral and Heterochiral Isomers of [Fe(PyBox)2]2+ Derivatives. Chemistry - A European Journal, 23 (38). pp. 9067-9075. ISSN 0947-6539
Abstract
The following iron(II) complexes of 2,6-bis(oxazolinyl)pyridine (PyBox; LH) derivatives are reported: [Fe(LH)2][ClO4]2 (1); [Fe((R)-LMe)2][ClO4]2 ((R)-2; LMe=2,6-bis{4-methyloxazolinyl}pyridine); [Fe((R)-LPh)2][ClO4]2 ((R)-3) and [Fe((R)-LPh)((S)-LPh)][ClO4]2 ((RS)-3; LPh=2,6-bis{4-phenyloxazolinyl}pyridine); and [Fe((R)-LiPr)2][ClO4]2 ((R)-4) and [Fe((R)-LiPr)((S)-LiPr)][ClO4]2 ((RS)-4; LiPr=2,6-bis{4-isopropyloxazolinyl}pyridine). Solid (R)-3⋅MeNO2 exhibits an unusual very gradual, but discontinuous thermal spin-crossover with an approximate Tmath formula of 350 K. The discontinuity around 240 K lies well below Tmath formula , and is unconnected to a crystallographic phase change occurring at 170 K. Rather, it can be correlated with a gradual ordering of the ligand conformation as the temperature is raised. The other solid compounds either exhibit spin-crossover above room temperature (1 and (RS)-3), or remain high-spin between 5–300 K [(R)-2, (R)-4 and (RS)-4]. Homochiral (R)-3 and (R)-4 exhibit more twisted ligand conformations and coordination geometries than their heterochiral isomers, which can be attributed to steric clashes between ligand substituents [(R)-3]; or, between the isopropyl substituents of one ligand and the backbone of the other ((R)-4). In solution, (RS)-3 retains its structural integrity but (RS)-4 undergoes significant racemization through ligand redistribution by 1H NMR. (R)-4 and (RS)-4 remain high-spin in solution, whereas the other compounds all undergo spin-crossover equilibria. Importantly, Tmath formula for (R)-3 (244 K) is 34 K lower than for (RS)-3 (278 K) in CD3CN, which is the first demonstration of chiral discrimination between metal ion spin states in a molecular complex.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | chirality; iron; isomers; N-ligands; spin-crossover |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemistry (Leeds) > Inorganic Chemistry (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Condensed Matter (Leeds) |
Funding Information: | Funder Grant number EPSRC EP/K012568/1 EPSRC EP/J021156/1 Leverhulme Trust RPG-2015-095 |
Depositing User: | Symplectic Publications |
Date Deposited: | 06 Apr 2017 11:11 |
Last Modified: | 13 Dec 2024 09:49 |
Status: | Published |
Publisher: | Wiley |
Identification Number: | 10.1002/chem.201700820 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:114618 |