Rucklidge, A.M. (1994) Chaos in magnetoconvection. Nonlinearity, 7 (6). 1565 -1591. ISSN 1361-6544
Abstract
The partial differential equations (PDEs) for two-dimensional incompressible convection in a strong vertical magnetic field have a codimension-three bifurcation when the parameters are chosen so that the bifurcations to steady and oscillatory convection coincide and the limit of narrow rolls is taken. The third-order set of ordinary differential equations (ODEs) that govern the behaviour of the PDEs near this bifurcation are derived using perturbation theory. These ODEs are the normal form of the codimension-three bifurcation; as such, they prove to be an excellent predictor of the behaviour of the PDEs. This is the first time that a detailed comparison has been made between the chaotic behaviour of a set of PDEs and that of the corresponding set of model ODEs, in a parameter regime where the ODEs are expected to provide accurate approximations to solutions of the PDEs. Most significantly, the transition from periodic orbits to a chaotic Lorenz attractor predicted by the ODEs is recovered in the PDEs, making this one of the few situations in which the nature of chaotic oscillations observed numerically in PDEs can be established firmly. Including correction terms obtained from the perturbation calculation enables the ODEs to track accurately the bifurcations in the PDEs over an appreciable range of parameter values. Numerical calculations suggest that the T-point (where there are heteroclinic connections between a saddle point and a pair of saddle-foci), which is associated with the transition from a Lorenz attractor to a quasi-attractor in the normal form, is also found in the PDEs. Further numerical simulations of the PDEs with square rolls confirm the existence of chaotic oscillations associated with a heteroclinic connection between a pair of saddle-foci.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Copyright © 1994 IOP Publishing Ltd and LMS Publishing Ltd. This is an author produced version of an article published in Nonlinearity. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Depositing User: | A. M. Rucklidge |
Date Deposited: | 06 Feb 2006 |
Last Modified: | 06 Jun 2014 18:29 |
Published Version: | http://www.iop.org/EJ/abstract/0951-7715/7/6/003 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1088/0951-7715/7/6/003 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:979 |