Mikhailov, AV, Papamikos, G and Wang, JP (2016) Dressing method for the vector sine-Gordon equation and its soliton interactions. Physica D: Nonlinear Phenomena, 325. pp. 53-62. ISSN 0167-2789
Abstract
In this paper, we develop the dressing method to study the exact solutions for the vector sine-Gordon equation. The explicit formulas for one kink and one breather are derived. The method can be used to construct multi-soliton solutions. Two soliton interactions are also studied. The formulas for position shift of the kink and position and phase shifts of the breather are given. These quantities only depend on the pole positions of the dressing matrices.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016, Elsevier B.V. All rights reserved. This is an author produced version of a paper published in Physica D: Nonlinear Phenomena. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Mar 2016 12:42 |
Last Modified: | 14 Apr 2017 03:08 |
Published Version: | http://dx.doi.org/10.1016/j.physd.2016.01.010 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.physd.2016.01.010 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:96339 |