Barmpalias, G, Elwes, RH and Lewis-Pye, A (2014) Digital Morphogenesis via Schelling Segregation. In: IEEE Annual Symposium on Foundations of Computer Science. 2014 Annual Symposium on Foundations of Computer Science, 18-21 Oct 2014, Philadelphia. IEEE Computer Society Press , 156 - 165.
Abstract
Schelling's model of segregation looks to explain the way in which particles or agents of two types may come to arrange themselves spatially into configurations consisting of large homogeneous clusters, i.e. connected regions consisting of only one type. As one of the earliest agent based models studied by economists and perhaps the most famous model of self-organising behaviour, it also has direct links to areas at the interface between computer science and statistical mechanics, such as the Ising model and the study of contagion and cascading phenomena in networks. While the model has been extensively studied it has largely resisted rigorous analysis, prior results from the literature generally pertaining to variants of the model which are tweaked so as to be amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory. In BK, Brandt, Immorlica, Kamath and Kleinberg provided the first rigorous analysis of the unperturbed model, for a specific set of input parameters. Here we provide a rigorous analysis of the model's behaviour much more generally and establish some surprising forms of threshold behaviour, notably the existence of situations where an increased level of intolerance for neighbouring agents of opposite type leads almost certainly to decreased segregation.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2014 Crown Copyright. This is an author produced version of a paper published in Annual Symposium on Foundations of Computer Science. |
Keywords: | Schelling segregation; Ising; spin glass; networks; morphogenesis; Algorithmic game theory |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Pure Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 20 Nov 2015 10:02 |
Last Modified: | 17 Jan 2018 03:10 |
Published Version: | http://dx.doi.org/10.1109/FOCS.2014.25 |
Status: | Published |
Publisher: | IEEE Computer Society Press |
Identification Number: | 10.1109/FOCS.2014.25 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:90284 |