Bryant, M, Hu, X, Farrar, R et al. (3 more authors) (2013) Crevice corrosion of biomedical alloys: A novel method of assessing the effects of bone cement and its chemistry. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 101 B (5). 792 - 803. ISSN 1552-4973
Abstract
In this study, five commercially available poly(methyl methacrylate) PMMA bone cements were tested to investigate the effects of antibiotics on the severity of crevice corrosion. Bone cements with varying chemistry were also tested. A test method was developed in part reference to ASTM F746-04. Cylindrical specimens were fitted with a bone cement tapered collar, creating consistent crevice conditions. Crevice corrosion was then studied using potentiodynamic polarization techniques in 0.9% NaCl solution (pH7.4) at 37°C. Surface analyses using a light microscope and scanning electron microscopy were also conducted to investigate the surface morphology after accelerated electrochemical testing. Initial testing of commercially available bone cements indicated that different PMMA bone cements can affect the initiation and propagation mechanism of crevice corrosion. Further studies, utilising electrochemical and mass spectroscopy techniques, have identified that the addition of radiopaque agent and antibiotics affect the initiation mechanisms of 316L stainless steel, whilst significantly increasing the extent of propagation in CoCrMo alloys.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Keywords: | 316L stainless steel; bone cement; crevice corrosion; ion release; LC CoCrMo |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 10 Nov 2014 13:10 |
Last Modified: | 31 Jul 2015 06:08 |
Published Version: | http://dx.doi.org/10.1002/jbm.b.32883 |
Status: | Published |
Publisher: | Wiley |
Identification Number: | 10.1002/jbm.b.32883 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:80864 |