Luo, J, Korossis, SA, Wilshaw, SP et al. (3 more authors) (2014) Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue engineering. Part A. ISSN 1937-3341
Abstract
Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g. during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with: hypotonic Tris buffer (HTB; 10mM Tris pH 8.0, 0.1% (w/v) EDTA, 10KIU aprotinin), 0.1% (w/v) SDS in HTB, two cycles of DNase and RNase, and sterilisation with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Immunohistochemistry further confirmed cell removal and partial retention of the extra cellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96 % throughout all regions of the acellular tissue and no functional genes were detected using PCR. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrodynamic and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labelling and antibody absorption assay confirmed a lack of α-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular out flow tract reconstruction e.g. during the Ross procedure.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2014, Mary Ann Liebert, Inc. This work is licensed under a Creative Commons Attribution 3.0 United States License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work as ‘‘Tissue Engineering, Part A. Copyright 2014 Mary Ann Liebert, Inc. http://liebertpub.com/tea, used under a Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/us/ |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Medical and Biological Engineering (iMBE) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 02 Oct 2014 09:22 |
Last Modified: | 07 Dec 2022 15:26 |
Published Version: | http://dx.doi.org/10.1089/ten.tea.2013.0573 |
Status: | Published |
Publisher: | Mary Ann Liebert |
Identification Number: | 10.1089/ten.tea.2013.0573 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:80388 |