Liu, G.P., Kadirkamanathan, V. and Billings, S.A. (1994) Stable Sequential Identification of Continuous Nonlinear Dynamical Systems by Growing RBF Networks. Research Report. ACSE Research Report 547 . Department of Automatic Control and Systems Engineering
Abstract
This paper presents a sequential identification scheme for continuous nonlinear dynamical systems using neural networks. The nonlinearities of the dynamical systems are assumed to be known. The identification model is a Gaussian radial basis function neural network that grows gradually to span the appropriate state-space and of sufficient complexity to provide an approximation to the dynamical system. The sequential identification algorithm for continuous dynamical nonlinear systems is developed in the continuous-time framework instead of discrete-time. The approach, different from the conventional methods of optimizing a cost function, attempts to ensure stability of the overall system while the neural network learns the system dynamics. The stability and convergence of the overall identification scheme is guaranteed by a parameter adjustment laws developed using the Lyapunov synthesis approach. To ensure the modelling error can be reduced arbitrarily, a one-to-one mapping is proposed so that the states and inputs of the system are transferred into compact sets. The operation of the sequential identification scheme is illustrated using simulated experimental results.
Metadata
Item Type: | Monograph |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | The Department of Automatic Control and Systems Engineering research reports offer a forum for the research output of the academic staff and research students of the Department at the University of Sheffield. Papers are reviewed for quality and presentation by a departmental editor. However, the contents and opinions expressed remain the responsibility of the authors. Some papers in the series may have been subsequently published elsewhere and you are advised to cite the later published version in these instances. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) > ACSE Research Reports |
Depositing User: | MRS ALISON THERESA BARNETT |
Date Deposited: | 23 Jul 2014 09:13 |
Last Modified: | 28 Oct 2016 13:30 |
Status: | Published |
Publisher: | Department of Automatic Control and Systems Engineering |
Series Name: | ACSE Research Report 547 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:79851 |