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Abstract

This paper presents a sequential identification scheme for continuous nonlinear dy-
namical systems using neural networks. The nonlinearities of the dynamical systems are
assumed to be unknown. The identification model is a Gaussian radial basis function
neural network that grows gradually to span the appropriate state-space and of suffi-
clent complexity to provide an approximation to the dynamical system. The sequential
identification algorithm for continuous dynamical nonlinear systems is developed in the
continuous-time framework instead of in discrete-time. The approach, different from the
conventional methods of optimizing a cost function, attempts to ensure stability of the
overall system while the neural network learns the system dynamics. The stability and
convergence of the overall identification scheme is guaranteed by parameter adjustment
laws developed using the Lyapunov synthesis approach. To ensure the modelling error
can be reduced arbitrarily, a one-to-one mapping is proposed so that the states and in-
puts of the system are transferred into compact sets. The operation of the sequential
identification scheme is illustrated using simulated experimental results.
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1 Introduction

The identification of nonlinear systems using neural networks has become a widely studied
research area in recent years. System identification mainly consists of two steps: the first is to
choose an appropriate identification model and the second is to adjust the parameters of the
model according to some adaptive laws so that the response of the model to an input signal can
approximate the response of the real system to the same input. Since neural networks have
good approximation capabilities and inherent adaptivity features, they provide a powerful
tool for identification of systems with unknown nonlinearities [1], [17].

The application of neural network architectures to nonlinear system identification has been
demonstrated by several studies in discrete time (see, for example, (3], [6], [5], [13], [15], [21],
[29], [36]) and in continuous time [26], [30], [31]. For the most part, much of the studies in
discrete-time systems are based on first replacing unknown functions in the difference equation
by static neural networks and then deriving update laws using optimization methods (eg.,
gradient descent/ascent methods) for a cost function (quadratic in general), which has lead
to various back-propagation-type algorithms [22], [34], [35]. Though such schemes perform
well in many cases, in general, some problems arise, such as the stability of the overall
identification scheme and convergence of the output error. Alternative approaches based on
the model reference adaptive control scheme [20], [32) have been developed [26], [30], [31]
where the stability of the overall scheme is taken into consideration.

Much of the neural network based identification schemes view the problem as deriving
model parameter adaptive laws, having chosen a structure for the neural network. However,
choosing this structure such as the number of basis functions (hidden units in a single hidden
layer) in the model must be done a priori. This can often lead to an over-determined or
under-determined network structure which in turn leads to an identification model that is not
optimal. In discrete-time formulation, some approaches have been developed in determining
the number of hidden units (or basis functions) using decision theory [2] and model comparison
methods such as minimum description length [33] and Bayesian methods [16]. The problem
with these methods are that they require all observations to be available together and hence
are not suitable for on-line or sequential identification task.

Yet another line of approach, developed for discrete-time systems, is to begin with a
larger network prune, as in [19], or begin with a smaller network grow as in (8], [24] until the
optimal network complexity is found. Amongst these dynamic structure models, the resource
allocating network (RAN) developed by Platt [24] is an on-line or sequential identification
algorithm. The RAN is essentially a growing Gaussian radial basis function (GRBF) network
whose growth criteria and parameter adaptation laws have been studied and extended further
by Kadirkamanathan [9], [10] and applied to time-series analysis [12] and pattern classification
[11]. The RAN and its extensions addressed the identification of only autoregressive systems
with no external inputs and hence stability was not an issue.




Liu, Kadirkamanathan & Billings

Due to some desirable features such as local adjustment of the weights and mathemat-
ical tractability, radial basis function networks (RBF) have recently attracted considerable
attention. Their importance has also greatly benefited from the work of Moody and Darken
[18] and, Poggio and Girosi [25] who explore the relationship between regularization theory
and radial basis function networks. The good approximation properties of the radial basis
functions in interpolation have been well studied by Powell and his group [28].

In this paper, we present a sequential identification scheme for continuous-time nonlinear
dynamical systems with unknown nonlinearities using a RAN [24] like growing Gaussian
radial basis function (GRBF) network. The model starts with no hidden units and grows by
allocating units on a regular grid, based on the novelty of observation. Since the novelty of
the observation is tested, it is idealy suited for on-line identification problems. The objective
behind the development is to approach gradually the appropriate complexity of the network
that is sufficient to provide an approximation to the system to be identified that is consistent
with the observations being received. By allocating GRBF units on a regular grid, only the
relevant state-space traversed by the dynamical system is spanned, resulting in a considerable
savings on the final size of the network.

The parameters of the growing neural network based identification model are adjusted by
adaptation laws developed using the Lyapunov synthesis approach. The sequential identifica-
tion algorithm for continuous dynamical nonlinear systems is also developed in the continuous-
time framework rather than in discrete-time. A similar scheme for adaptive control has been
recently developed where growing GRBF network is used of for the control of feedback lin-
earisable continuous-time nonlinear systems with laws derived using the Lyapunov synthesis
techniques [7].

The paper is organised as follows: In Section 2, the modelling of single-input single-state
(SISS) nonlinear dynamical systems by the GRBF network is discussed and a one-to-one
mapping of the state-space to form compact network input space is also proposed. The
basic identification algorithm with neural networks using the Lyapunov synthesis approach is
developed in Section 3, where the stability of the overall identification scheme is guaranteed.
Based on this basic identification algorithm and the RAN-like growing GRBF network, the
sequential identification algorithm is developed in Section 4. In Section 5, the sequential
identification for the single input single state (SISS) systems is extended to multi-input multi-
state (MIMS) systems. The operation of the sequential identification scheme is demonstrated
by a simulated example in Section 6.
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2 Dynamical system modelling by neural networks

For the sake of simplicity, we first discuss the modelling of single-input single-state (SISS)
continuous nonlinear dynamical systems. The multi-input multi-state (MIMS) case will be
considered in Section 5. Consider the class of continuous-time dynamical systems with an
input - state representation given by,

i(t) = f(z(t)) u(t))v CC(O) = Zo, (1)

where f(z,u)is an unknown nonlinear function that must be estimated, u € R?! is the input,
z € R' is the state and ¢ € R* is the temporal variable. By subtracting and adding azr, where
a is some positive constant, the system (1) becomes,

2(t) = —az + g(z(1), u(2)), z(0) = zo, (2)

where
g(z,u) = f(z,u)+ az (3)

is still a nonlinear function. Since neural networks provide an input - output mapping, we
construct a model based on equation (2) by replacing the nonlinear part g(z,u) by a neural
network. Consider the model [14],

3(t) = —ai(t) + §(2(1), u(t)i p(®))y  2(0) = o, (4)

where g is the output of the neural network, # denotes the state of the identification model,
while p(t) denotes the adjustable parameters of the network.

Radial basis functions were introduced to the neural network literature by Broomhead and
Lowe [4] and have gained significance in the field due to several applications and theoretical
results [18], [23], [25]. One of the commonly used radial basis function networks is the Gaussian
radial basis function (GRBF) neural network, also called the localised receptive field network.
The nonlinear function g(z,u) is therefore approximated by the GRBF network, which is
expressed by,

K
iz, ip) = Zwkexp{—% [(I—mh)z-{-(u-mkg)z]} (5)

k=1

where 7 is the width of the k™ basis function whose centre is m; = [mk1, me2)T, p is the
parameter vector containing wg, 74 and my (k = 1,2,..., K).

It is well known that if the variables of a nonlinear function are in compact sets, the
continuous function can be approximated arbitrarily well by the GRBF networks. If z and u
are not in compact sets, we introduce the following one-to-one (1-1) mapping:

i bez(t) ) = byu(t)
R ey It Ol vy ey (©)
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where a;, bz, a,, by, are positive constants, which can be chosen by the designer (eg., az, bz, ay, by
are 1). Thus, it is clear from equation (6) that Z(t) € [—bg,b:] and @(t) € [—by,b,) for
Z,u € (—00,+00). On the other hand, if z and u are already in compact sets, we only need to
set Z = z and % = u. The above one-to-one mapping is illustrated in Figure 1, which shows
that in two-dimensional space the entire area can be transferred into a rectangular one.

=

]

Figure 1: The one-to-one (1-1) mapping.

Replacing z and u by Z and @ in equation (5), the model of the system described by the
GRBF network can be written as,

K
8(z,1;p) = Y widk(Z, T my, 7x) (7)
k=1
where,
©i(Z, U my, Tx) = exp {_riz {(:E - m)? + (2 - mkz)z]} (8)
k

The problem then becomes that of estimating the function §(Z,,p) based on the variables
Z(t) and @(t), which are in compact sets. A schematic diagram of the identification framework
is shown in Figure 2.

t(x,u) l e f

Yy

A

=
1

Y

GRBF )

Yy

1-1

c|

Figure 2: The configuration for identification framework.
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3 Stable sequential identification

In system identification, the stability of the overall identification scheme is an important issue.
Even when the real system to be identified is bounded-input bounded-state stable there is
no a priori guarantee that the estimated state or the adjustable parameters of the model
will remain bounded. The overall stability depends not only on the particular identification
model that is chosen but also on the parameter adjustment rules that are used. This problem
is solved here by developing a stable parameter adjustment rule based on Lyapunov stability
techniques [14] for the GRBF network model discussed in Section 2.

We assume that the basis functions ¢k (Z, &;mk, 7%) for k = 1,2,..., K are given. Section
4 will discuss how the basis functions of the network model are chosen. Thus, based on the
above assumption, the GRBF network based system model can be rewritten in the form of,

K
= —azx +Zw}:¢k(i,ﬂ;mk,rk)+£(t) (9)
k=1
where wi (k= 1,2,..., K')is the optimal weight value and £(t) is the modelling error defined
as,

e(t) = ,1,p)

9(z,@) - 4(z
K
= g(2.,2) = Y wiow(Z, Ty my,rx) (10)
k=1
It is well known from approximation theory that the modelling error can be reduced arbitrarily
by increasing the number K, {e., the number of the linear independent basis functions ¢ in
the network model. Thus, it is reasonable to assume that the modelling error £(t) is bounded
by a constant ex, which represents the accuracy of the model and this is defined as,

ex = sup |e(1)] (11)
teERT

Since Z(t) € [~bz,b;] and @(t) € [—by,by.) are bounded, the constant ey is finite. From
equation (4) we also have the identification model

K
f=—ai+ ) widk(Z, T3 my, ) (12)
k=1
where wi (k= 1,...,K) is the estimate of w}, while & is the estimated state of the model.

Let us define the state error and the weight estimation error respectively as,

€x = ZT—F%

13
e = wp— wy o
Hence, from equations (9), (12) and (13) the dynamical expression of the state error is,
K
€z = —aez + Z Exdn(Z, Uy my, i) + €(2) (14)
k=1
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Consider the following Lyapunov function candidate,

1 T
- 2 2
V(ez,z) = 3 [% Ly k§=1: Ek] (15)
where z = [£,...,6k])T and a is a positive constant which will appear in the sequential

adaptation laws, also referred to as the learning or adaptation step size. Using equation (15),
the time derivative of the Lyapunov function V is given by

K K
; 1 .
V(E:‘.\ Z) = —aei + Z emEstk(i, ﬁ; my, Tk) + E z EkEk + e,e(t) (16)
k=1 k=1
1 E ‘
= —ae+ = D (aezbrdi(Z, T my, i) + Exéi) + e2£(2) (17)
k=1
Since wy is constant, we have that w; = —ék. Therefore it is clear from equation (17)

that if the parameter estimates wy are adapted according to the following laws:

Wi = aex0k(Z, U my, 1), for k=1,...,K (18)
then equation (17) becomes,
Viez,2) = —ael 4 e.e(t)
< —ael + eslex
= -—ales|(lez| —ex/a) (19)

If there is no modelling error (ie., ex = 0), then from equation (19), V is negative semidefinite;
hence the stability of the overall identification scheme is guaranteed. On the other hand, in
the presence of a modelling error, if |ez| < ex /a then it is possible that V > 0, which implies
that the weights wy may drift to infinity with time. In order to avoid this drift, we can set
w = 0 if |e;| < ex/a so that the state error will converge to the set |e;| < ek /a. However,
the upper bound ¢k is unknown. Thus, we set an upper bound vVKM on |lw|| (Euclidean
norm of weight vector), where w(t) = [wy(t),...,wk(?)]T, and an upper bound e, (required

accuracy) on the state error ;. Then the modified estimation law is,
) ez 0k(Z, Uy my, k), if |ez| 2 e and |w||<VEM
We = ' (20)
0 otherwise

fork=1,...,K.

It can be seen from the modified weight adjustment laws above that if |e;| > e >
€k /a, the first derivative of the Lyapunov function with respect to time ¢t is always negative
semidefinite. Although in the case where eg < |e2| < ex /a, the weights may increase with time
because it is possible that ¥ > 0, it is known from the estimation laws (20) that the weights
are still limited by the bound VAM. If |ez| > €mazr (the maximum tolerable accuracy) and
[|w]| = V'K M, it means that more GRBF units are needed to approximate §. Therefore, the
overall identification scheme is still stable in the presence of modelling error. The Lyapunov
function V depends also on the parameter error and the negative semi-definiteness then
implies convergence of the algorithm.
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4 Identification with growing GRBF network

The control of real-time systems with unknown structure and parameter information can be
based on carrying out on-line or sequential identification using non-parametric techniques such
as neural networks. The sequential identification problem for continuous dynamic systems
can be stated as follows: Given the required modelling error, the prior identification model
structure and the on-line or sequential continuous observation, how are these combined to
obtain the model parameter adaptive laws or the required neural network approximation?

The identification problem for the dynamical system of equation (1) can be viewed as the
estimation of the nonlinear function g(Z,%;p) as shown in Section 2. If the modelling error
is greater than required, according to approximation theory more basis functions should be
added to the network model to get a better approximation. In this case, denote the prior
identification structure of the function at time ¢ as §(*)(Z, %; p) and the structure immediately
after the addition of a basis function as g"-(H‘)(:E, u;p). Based on the structure of the function
g(Z,u;p) in equation (5), the identification structure now becomes,

§)(Z, 2;p) = §(&, T p) + Wi 410K 41(F, L MK 41, TR 41) (21)

where wg 1 is the weight of the new (K + 1)** Gaussian radial basis function ¢K+1. The
sequential identification scheme using neural network for the nonlinear function g(Z,;p) is
shown in Figure 3.

Figure 3: The sequential identification scheme using the GRBF network.

It is also known that the k*» Gaussian radial basis function has a localisation property
that the influence area of this function is governed by the centre my and width rx. In other
words, once the centre my and the width rj are fixed, the influence area of the k** Gaussian
radial basis function ¢ is limited in the state-space to the neighbourhood of my.

Let us first consider how to limit the number of the centres and hence the size of the
network. As shown in Figure 1, the observation pairs (Z,%) are in a rectangular set. An
he X hy grid, where h; and hy, are odd integers, can be produced by scaling the Z and @ axes

7
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by 2bz/(hz — 1) and 2b,/(hy — 1), respectively, as shown in Figure 4. If the centres of the
basis functions of the network model are located on some of the crosspoints of the grid it is
clear that those centres will be equally distributed. For any point (Z,%) in the rectangular
set, the nearest crosspoint (Z,,,Zm,) can be calculated by,

Zn = round (éi) bz, i, = round (53) by (22)

where round(-) is an operator for rounding the number (-) to the nearest integer, (for example,
round(2.51) = 3), and

2b 2b
b= —--i—, i = —
P— and ¢ o1 (23)
The main influence area D of the radial basis function with the centre (Z,;, &) is also shown
in Figure 4. 4

'y

Figure 4: The two-dimensional grid.

Now, consider how the width ri of the k** basis function are chosen. The angle between
the two GRBFs ¢; and ¢; with the same width r; = r; = 7o is given by [9], [12],

1
B = s [exp {——2|[m.,- . mj||=}] . (24)
2rg

In order to assign a new basis function ¢; that is nearly orthogonal to all existing basis
functions, the angle between the GRBF's should be as large as possible. The width ry should
therefore be reduced. However, reducing i increases the curvature of ¢4 which in turn gives a
less smooth function and can lead to overfitting problems. Thus, to make a trade-off between
the orthogonality and the smoothness, a good choice for the width 7, which ensures the
angles between GRBF units are approximately equal to some required angle 8,,:5, is [9], [12],

% = k|jmy — mj ||, (25)
where

1 3
i
2log(1/ cos? Bpmin)

(26)

8
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With 6pin being the required minimum angle between Gaussian radial basis functions, and,

+ .

= min mg— m; 27
my argi:l.....K.lm.—;émg{“ k i} (27)
is the nearest (in the Euclidean space) centre to the k** centre. The above assignments are
same as those for the resource allocating network (RAN) [24] for which the equations are

arrived at from the consideration of observation novelty heuristics.

The growing network is initialised with no basis function units. As observations are
received the network grows by adding new units. The decision to add a new unit depends on
the observation novelty for which the following two conditions must be satisfied:

(i) ming=1,. k |Z(1) — me| > %‘

or (28)
ming=1,. k |%(t) = miz| > -‘52‘*
(ii) |z(t) — 2(1)| > emaxz (29)

where 6. and 6, represent the scale of resolution in the input-state grid, and e, is chosen
to represent the desired maximum tolerable accuracy of the state estimation. Criterion (i)
says that the current observation must be far from existing centers. Criterion (ii) means that
the state error in the network must be significant.

When a new unit is added to the network at time #;, the parameters associated with the
GRBF units are adapted as follows:

_ " T
mg4; = |round (@) 6z, round (@) 54 (30)
-+ L : - .
Wy = HE i:l,---;KHillI.lm|¢mk{”mk i} (3D
e = K|lmi—mi (32)

(33)

0 otherwise

i { Q&:Cﬁk(j,ﬁ,mk,ﬁ"k), if |6=:[ > eo and ”W“ L vE+1M
.

fork=1,...,K 4+ 1 and wg41(t1+) = 0. If no new GRBF unit is added, only the weights
are adapted by the law (33),for k=1,..., K.

It is known from approximation theory [27] that the approximation accuracy of a function
by a set of basis functions, such as in neural networks, is proportional to the parameters 6,
and 6, of the grid. In other words, the smaller the parameters §, and ., the more accurate
the neural model. If the tolerable accuracy of the state error is not reached, te.; |es| > Gmaz,
then the thresholds é; and é, on the criterion (i) should gradually be reduced by halving their
values (ie., 6;/2 and 6, /2) at each time step until the minimum allowed values are reached.
In this way, the state error will be reduced and the existing centres of the basis functions of
the network model are all still on the crosspoints of the new grid as shown in Figure 5.

9
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>

le
*ly

Figure 5: Modification of the two-dimension grid.

With the increase of the number of the GRBFs and the cross-points of the grid, the
approximation of a function by a GRBF network will be increasingly more accurate, ie.,
£k+1 < €x. According to the approximation theory there exists a number K* such that
€x+ < €o. It has also been shown in section 3 that the overall identification scheme is
stable and that the model parameters converge to within some bound of the optimal values.
Therefore, the algorithm developed in this section guarantees the stability and convergence
of the overall identification.

5 Identification of Multivariable Systems

In this section the sequential identification developed for single-input single-state systems is
extended to multivariable systems. Consider the multi-input multi-state (MIMS) continuous
dynamical system described by,

x(t) = £(x(1),u(?)), x(0) = xo, (34)

where u € R7*1 is the input vector, x € R™*? is the state vector and f(-) € ®**! is a nonlinear
function vector. Following the same line of analysis as for the single-input single-state case,
the identification model for the system system (34) can be expressed by,

x(t) = Ax + g(x(t),u(?)), x(0)= xo, (35)

where

g(x,u) = f(x, u) - Ax (36)

and A € ®™*" is a Hurwitz or stability matrix (ie., all the eigenvalues are in the open left-half
complex plane). Modelling the nonlinear function vector g(x, u) using GRBF neural networks
gives the following identification model:

x(t) = A%(t) + g(x(t), u(t); p(1)), *(0) = xo (37)

10
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where X denotes the state vector of the network model and g is the output vector of the
GRBF neural network. Define the following one-to-one mappings for the inputs and states:

. _ bysu(t
for 4=1; 250 iy ui(t)zrzﬁ—-

= T+ o
(38)
where @z, bgi, ay;, by; are positive constants. These mappings ensure that the elements of the

vectors Z and % are all in compact sets. The estimate of the function g then is written as,

g(x(t),u(t);p(t)) = g(x,0;p) = Wk dg(x, 1) (39)
where,

dx(%,0) = [qﬁuti,ﬁ),@({c,ﬁ),-..,%(i,ﬁn’f

dr(%,0) = eXP{-;lf [;]—mk } (40)

Wk = {wix} € R**K is the weight matrix of the network with & GRBF units, ¢x(-) € R is
the k*h Gaussian radial basis function, and p(t) denotes the adjustable parameter vector of
the network consisting of the weight matrix Wk, the centres my = [my, mya, .. .,mk(n+,)]T
and the width ry for k=1,2,..., K.

Assuming that the basis function vector ®x (X, 1) is given the real system can be modelled
by the GRBF network model as,

(1) = Ax + Wi Ok (%, @) + e(t) (41)

where W3 is the optimal weight matrix and e(t) = [e1(1), €2(t), ..., €n(¢)]7 is the modelling
error vector which is assumed to be bounded by,

ex = max_sup {Je(t)]} (42)
t=1,..,n teR+

Define the state error vector and weight error matrix as,

Tk = Wi- Wk (43
so that the dynamical expression of the state error is given by,
e = Ae; + T Px(X,0) + e(t) (44)
Consider the Lyapunov function,
V(e Tk) = %[ez‘e: =" %tr(I‘KI‘?{)] (45)

where t7(-) denotes the trace of the matrix (-). The first derivative of the Lyapunov function
V' with respect to time t is,

V(es,Tx) = elde, + eITx®x(x,0) + étr(fxf;() +ele(t) (46)

11
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Since,

I

el Tx®x (X, 1) tr(elTk ®x (%, 1))

= tT(I‘K@K(i,ﬁ)eI) (47)
equation (46) becomes,

V(es,Tk) = el Ae, + tr(Tx ®x (X, 0)el ) + %w(rxf'{c) +ele(t) (48)
and because W} is a constant matrix Wg = —I'x. Thus, if the estimation law for the weight
matrix is given by,

Wk = ae, 8% (%, 1) (49)

then equation (48) becomes,

V(e:,Tk) = efAe.+ele(t)
S _|’\ma=(A)|e§er 2 Efe(f)
S s Y fewl { e = = (50)
2 Poae (A)]

where Apa-(A) is the maximum eigenvalue of the matrix A which could be negative because
A is Hurwitz or stability matrix and eg; is the 1** element of the state error vector e;. In the
presence of a modelling error, if

. EK
‘min {|ex|} <
1= n

Prmaz(A)] (51)

then it is possible that V > 0, which implies that the weights w;, may drift to infinity over
time. Following the analysis for the single-input single-state case, this drift can be avoided
by modifying the adaptation law as,

. e 0K (X, 1), if |en| > e and ||Wg|<VEM
Uy = 0 ; (52)
otherwise
fori=1,...,nand k = 1,..., K, where eg is the required accuracy of the state error e; and

v KM are the upper bound on the Euclidean norm of the weight matrix Wg. It is easy to
show that the overall identification scheme with the modified identification laws is stable.

As observations are received the network grows by adding new units. The decision to add
a new unit depends on the observation novelty for which the following must be satisfied:

(i) Milk=1,.. K iz1,.n |Zi(t) — me| > &
or (53)
; _ by
mlnk:l,...,K,j:l....,? |uJ(t) - mk(3+ﬂ)l > _2-1
(ii) maXi=1,..n |.’L'1'(I) - i‘.;(t)l > maxz (54)

where §; and 6,; represent the scale of resolution in the input-state grid and emqz is chosen
to represent the desired maximum tolerable accuracy of the state estimation. When a new

12
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unit is added to the network at time ¢; the parameters associated with the GRBF units are
adapted as follows:

z(t 3
mk41); = round (-—(E—;—)-) 0zi, for i=1,...,n (55)
u(t .
mM(K41)(j+n) = Tround (J(T;)) Gujs dar §=1,00,F (56)
P i - m; = Lan s
mp = ag_ min o Allmi-mi}, for k=1,..,K+1 (57)
T = n||mk-—m;'¢'||, for k=1,....,.K+1 (58)
G = aezidr(X,0), if |ex| > e and Wkl < VK + 1M (59)
' 0 otherwise

for 1=1,04n and E=1,..,K+1

where wg,1)(t14+) = 0. If no new GRBF unit is added, only the weight matrix Wg is
adapted using the law above in (59).

6 Simulation results

In this section a SISS dynamical system is used to demonstrate the operation of the sequential
identification algorithm for a continuous nonlinear system. The following SISS continuous-
time dynamical system was considered:

¢ =11(1-z-2zu+ z?)exp(-0.5z% — u?) (60)

where the input u is assumed to be cos(t) and the initial state 2(0) = 0. The parameter
values used in this example are as follows: ey = 0.001, €mer = 0.005,6; = 6, = 0.05,a =
0.5,M =15,a=1,k=3.0,z0 = 0.

The simulation was begun with no GRBF units in the network model and the number of
units increased with time, according to the growth criteria. The final results after an operation
over a period of 10 seconds gave a GRBF network with 16 hidden units, for approximating the
dynamical system. The performance of the sequential identification scheme using the GRBF
network are shown in Figures 6 - 9, for a typical run of the algorithm observing that similar
plots obtained under different operational conditions.

The actual and estimated states and the state error of the dynamical system against
time t are shown in Figures 6 and 7, respectively. It can be seen from Figure 6 that for
much of the operation, the state error is constrained within the maximum tolerable bound
€maz = 0.005. The network parameters also converged to a set of values although they were
oscillating around these values. A plot of the actual state z and the estimated state £ against
the input u is shown in Figure 8 which indicates the presence of the strong nonlinearity in
the dynamical system. Figure 9 shows the relationship between the estimated state and its
first derivative as they gradually approach the true set of values.
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Figure 6: The real state z and the estimated state # over time.
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Figure 7: The state error e, with time.
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the input u

Figure 8: The actual state r (—) and the estimated state & (- - -) against the input u.

”O.B 1 1 1 1 1
0 0.2 0.4 06 0.8 1 1.2

Figure 9: The actual derivative of the state & against the state ¢ (—) and the estimated
derivative of the state 7 against the state Z (- - -)
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7 Conclusions

A sequential identification scheme for continuous nonlinear dynamical systems with unknown
nonlinearities using neural networks has been developed. The main feature of this scheme
is the combination of the growing Gaussian radial basis function network with that of Lya-
punov synthesis techniques in developing the adaptive or estimation laws that guarantee the
stability of the system. The idea of growing the network, similar to the resource allocating
network (RAN) overcomes the problem of having to choose the neural network structure a
priori, a difficult task which often results in an over-determined network. The network begins
with no radial basis function units and with increasing time, the model grows gradually to
approach the appropriate complexity of the network that is sufficient to provide the required
approximation accuracy. The stability of the overall identification scheme and convergence
of the model parameters are guaranteed by parameter adjustment laws developed using the
Lyapunov synthesis approach. To ensure that the modelling error is reduced arbitrarily, a
transformation is proposed so that the states and inputs of the system are mapped into
compact sets. The operation of the sequential identification algorithm is demonstrated on a
simulated experiment and the results conform to the theoretical expectations.
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