
There is a more recent version of this eprint available. Click here to view it.
McCullen, NJ, Rucklidge, AM, Bale, CSE et al. (2 more authors) (2012) Multi-parameter models of innovation diffusion on complex networks.
Abstract
A model, applicable to a range of innovation diffusion applications with a strong peer to peer component, is developed and studied, along with methods for its investigation and analysis. A particular application is to individual households deciding whether to install an energy efficiency measure in their home. The model represents these individuals as nodes on a network, each with a variable representing their current state of adoption of the innovation. The motivation to adopt is composed of three terms, representing personal preference, an average of each individual's network neighbours' states and a system average, which is a measure of the current social trend. The adoption state of a node changes if a weighted linear combination of these factors exceeds some threshold. Numerical simulations have been carried out, computing the average uptake after a sufficient number of time-steps over many realisations at a range of model parameter values, on various network topologies, including random (Erdos-Renyi), small world (Watts-Strogatz) and (Newman's) highly clustered, community-based networks. An analytical and probabilistic approach has been developed to account for the observed behaviour, which explains the results of the numerical calculations.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2012. Published in arXiv and uploaded in accordance with the publisher's self archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Jan 2013 12:09 |
Last Modified: | 02 Nov 2016 12:40 |
Status: | Published |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:74779 |
Available Versions of this Item
- Multi-parameter models of innovation diffusion on complex networks. (deposited 14 Jan 2013 12:09) [Currently Displayed]