Wei, H.L., Zhu, D.Q., Billings, S.A. et al. (1 more author) (2006) Forecasting the geomagnetic activity of the Dst Index using radial basis function networks. Research Report. ACSE Research Report no. 941 . Automatic Control and Systems Engineering, University of Sheffield
Abstract
The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models based on limited input-output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. Radial basis function (RBF) networks are an important and popular network model for nonlinear system identification and dynamical modelling. A novel generalised multiscale RBF (MSRBF) network is introduced for Dst index modelling. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using an orthogonal least squares (OLS) type algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems.
Metadata
Item Type: | Monograph |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | The Department of Automatic Control and Systems Engineering research reports offer a forum for the research output of the academic staff and research students of the Department at the University of Sheffield. Papers are reviewed for quality and presentation by a departmental editor. However, the contents and opinions expressed remain the responsibility of the authors. Some papers in the series may have been subsequently published elsewhere and you are advised to cite the later published version in these instances. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) > ACSE Research Reports |
Depositing User: | Miss Anthea Tucker |
Date Deposited: | 10 Oct 2012 10:18 |
Last Modified: | 09 Jun 2014 00:00 |
Status: | Published |
Publisher: | Automatic Control and Systems Engineering, University of Sheffield |
Series Name: | ACSE Research Report no. 941 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:74600 |