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Abstract 
 

The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in 
magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic 
field. A data-based modelling approach, aimed at obtaining efficient models based on limited input-
output observational data, provides a powerful tool for analysing and forecasting geomagnetic 
activities including the prediction of the Dst index. Radial basis function (RBF) networks are an 
important and popular network model for nonlinear system identification and dynamical modelling. A 
novel generalised multiscale RBF (MSRBF) network is introduced for Dst index modelling. The 
proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the 
training of the linear network model can easily be implemented using an orthogonal least squares 
(OLS) type algorithm. One advantage of the new MSRBF network, compared with traditional single 
scale RBF networks, is that the new network is more flexible for describing complex nonlinear 
dynamical systems. 
 

1.     Introduction 
 

The magnetosphere is a complex input-output dynamical nonlinear system, where the solar wind 
and the associated parameters play the role of the inputs and the geomagnetic indices can be 
considered as the outputs. The Dst index is an important parameter to measure the disturbance of the 
geomagnetic field in a magnetic storm. Several approaches have been proposed to study the dynamics 
of the magnetosphere under the influence of the solar wind, and the existing methods can broadly be 
classified into two categories: first-principle-based modelling (or similar methods) (Burton et al., 
1975; Baker et al., 1990; Goertz et al., 1993; Klimas et al., 1998; Pulkkinen and Baker, 1997; O’Brien 
and McPherron, 2000), and data-based modelling (Hernandez et al., 1993; Vassiliadis et al., 1995, 
1999; Takalo and Timonen; 1997; Wu and Lundsted, 1997; McPherron, 1999; Boaghe et al., 2001; 
Watanabe et al., 2002;  Wei et al., 2004). Generally, first-principle-based modelling approaches 
require a comprehensive physical insight of all the associated macro and micro events jointly 
occurring in space weather dynamics. It is not always easy to obtain a comprehensive mathematical 
model based on first principles due to the difficulty of understanding the inherent mechanism of 
magnetosheric events such as storms and substorms which represent chains of complex physical 
processes. Data-based modeling, or system identification, which is an alternative to first-principle-
based modeling, is thus required to provide a desirable means for forecasting and understanding the 
complex magnetospheric dynamics. In data-based modeling, the dynamical system is considered to be 
structure-unknown, and a mathematical representation for the underlying dynamics will be identified 
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from available observational data. In such a case, the solar wind parameters will be considered as 
inputs and the geomagnetic indices will be treated as the outputs of the magnetosphere system. 

In the literature many types of model structures have been proposed for nonlinear dynamical 
systems identification, where the inner structure of the underlying system is unknown but only the 
input and output observational data are available. The NARMAX models, neural networks, radial 
basis function networks, neurofuzzy networks, and wavelet networks and wavelet multiresolution 
models are among the classes of the most popular model types (Leontaritis and Billings, 1985; Billings 
et al., 1989, 1998; Chen et al., 1990; Chen and Billings, 1992; Boaghe et al., 2001; Liu, 2001; Harris et 
al., 2002; Lundstedt et al., 2002; Wei et al, 2004a; Billings and Wei, 2005a, 2005b; Sharifi et al., 
2006). 

Radial basis function (RBF) networks, as a special class of single hidden-layer feedforward neural 
networks, have been proved to be universal approximators (Hartman et al., 1990; Poggio and Girosi, 
1990; Park and Sandberg, 1991) for arbitrary nonlinear functions. One advantage of RBF networks, 
compared to multi-layer perceptrons (MLP), is that the linearly weighted structure of RBF networks, 
where parameters in the units of the hidden layer can often be pre-fixed, can easily be trained with a 
fast speed without involving nonlinear optimization. Another advantage of RBF networks, compared 
with other basis function networks, is that each basis function in the hidden units is a nonlinear 
mapping which maps a multivariable input to a scalar value, and thus the total number of candidate 
basis functions involved in a RBF network model is not very large and does not increase when the 
number of input variables increases. 

This study aims to propose a new direct approach for identifying a mathematical model for the 
magnetospheric dynamics without any a priori information of the physical processes of the 
magnetosphere system but only a limited observational data. To achieve this objective, a novel class of 
RBF networks is introduced to represent the underlying dynamics of the magnetosphere system. 
Unlike a conventional single scale (kernel width) RBF, where all the basis functions have a common 
single scale, or each basis function has a single individual scale, the new RBF network uses a number 
of multiscale basis functions, where each basis function has multiple scale parameters (kernel widths). 
The new network will be referred to as the multiscale RBF network (MSRBF). The construction 
procedure of such a MSRBF network is as follows. The positions (centres) of the basis functions in the 
MSRBF network are initially pre-clustered and selected using some unsupervised clustering algorithm 
say the k-means clustering method. For each selected centre, the associated scales (kernel widths) are 
determined heuristically, and the selected centres and scales are restricted to a fixed grid. Finally, an 
MSRBF network is converted into a linear-in-the-parameters model form. A forward orthogonal 
regression (FOR) algorithm (Billings et al., 1989; Chen et al. 1989; Wei et al., 2006), regularised by a 
Bayesian information criterion (BIC) (Schwarz, 1978; Efron and Tibshirani, 1993), is then used to 
train the MSRBF network, and a parsimonious model, which consists of a relatively small number of 
regressors, is then used to predict the Dst index. 

 

2.     The linear-in-the-parameters representation 
 

Consider the identification problem of a single-input and single-output (SISO) nonlinear 

dynamical system, for which N pairs of input-output observations, N
ttytu 1)}(),({ = , are available. Under 

some mild conditions a discrete-time nonlinear system can be described by the following NARX 
model (Leontaritis and Billings, 1985) 

 
)())(,),1(),(,),1(()( tentutuntytyfty uy +−−−−=                                                                  (1) 

 
where )(tu , )(ty and )(te  are the system input, output and noise variables; un and yn  are the 

maximum lags in the input and output, respectively; and f is a nonlinear mapping that is in general 
unknown and needs to be identified from the available observations. It is generally assumed that )(te  
is an independent identical distributed noise sequence.  
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The central task of system identification is to find an efficient approximatorf̂  for the nonlinear 
function f from the observational data. Several model types can be used to approximate the nonlinear 
function f and different model types often involve totally different training/learning strategies. One of 
the most commonly used methods is to approximate the nonlinear function f using a series of specified 
basis functions, whose local and global properties are known. One advantage of the basis function 
approximation is that the expression can easily be converted into a linear-in-the-parameters form, 
which is an important class of representations for nonlinear function approximation and signal 
processing. Compared to nonlinear-in-the-parameters models that usually involve complex and time-
consuming nonlinear optimisation, linear-in-the-parameters models are simpler to analyse and quicker 
to compute and estimate.  

Let uy nnd +=  and )](,),([)( 1 txtxt d=x with 

 







+≤≤+−−

≤≤−
=

uyyy

y

k nnknnktu

nkkty
tx

1   ))((

1               )(
)(                                                                                    (2) 

 
A general form of the linear-in-the-parameters regression model is given as 
 

)())((ˆ)( tetfty += x )())((
1

tet
M

m
mm +=∑

=

xφθ )()( tetT += șĳ                                                              (3) 

 
where M is the total number of candidate regressors, ))(( tm xφ (m=1,2, …, M) are the model regressors 

and mθ are the model parameters, and T
M ttt ))]((,)),(([)( 1 xxĳ φφ = and șare the associated regressor 

vector and parameter vector respectively. 
In the present study, a new multiscale RBF (MSRBF) network model with Gaussian kernels will 

be used to construct the approximatorf̂ , and this is discussed in the next section. 
 

3.   Multiscale RBF networks 
 

The multiscale RBF (MSRBF) network aims to accommodate both the local and the global 
properties of the basis functions by including both small and large scales (kernel widths) in the 
network in a hierarchical multiscale way. In the multiscale modelling framework, a set of scale 
parameters (multiple kernel widths) will be assigned to each basis function. 

 
3.1   The Network Structure 
 

Taking the case of single-input and single-output nonlinear dynamical systems as an example, the 
MSRBF network possesses the following structure  
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where (linear)
kθ and (RBF)

,, mjiθ  are constants (unknown parameters), ),);(( ),(
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mmmji t scxϕ  is the mth Gaussian 

basis function of the form 
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where )](,),([)( 1 txtxt d=x , defined by (2), is the network input vector, ],,[)( ,1, dmmm cct =c  is the 

centre of the mth basis function, and the scale vector ),( ji
ms  for the mth basis function in the network is 

defined as 
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The number of the basis functions (or the number of centres) in the network iscN , the number of 
scales for the output and input variables in the mth basis function is (I+1) and (J+1) respectively. Thus, 
for a single-input and single-output system, the network involves a total of cNJIM )1)(1( ++= basis 
functions. 

All given observations can be considered as candidate kernel centres providing that the 
observational data set is not very long. For a long data set, some unsupervised learning algorithms can 
be used to locate the centres of the basis functions in only those regimens of the input space where 
significant data are present, and supervised learning approaches can then be used to train the network 

further. The details for the determination of the centres mc  and the kernel widths ),( ji
ms  are given 

below. 
 
3.2   Determine the centres 
 

If the observed data set is not very long, all given observations can be considered as candidate 
kernel centresmc . If, however, a long data set is involved and all the observations are still considered 
as candidate kernel centres, the initial MSRBF network will then include a great number of model 
terms and the training of the network will be time consuming. To overcome this problem, the well-
known k-means clustering algorithm (Duda et al., 2001), coupled with the sum-of-squares criterion 
proposed by Krzanowski and Lai (1988), can be used to significantly reduce the number of candidate 
centres of the basis functions in the network. The sum-of-squares clustering algorithm is briefly 
described as below. 

Assume that the data are given in the form of a matrix X of size pN × , with the ith row given by 

the vector ],,[ 1 ipii zz =z  representing the observation vector of the ith object. The given N 

observations can be partitioned into k groups (clusters), denoted by kGGG ,,, 21  , where k is an 

arbitrary integer between 1 and N. Let jN be the number of objects that fall into the jth group jG , and 

jI the indices of the jN observations in jG . Define ∑ =
=

k

j jk dW
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To choose an appropriate value for k, to determine the number of clusters, Krzanowski and Lai (1988) 
suggested the following criterion  
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and the optimal value of k is the value that maximise the statistic below 
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The above sum-of-squares clustering algorithm can be used to select the number of centres for the 
MSRBF network. For a given training data set of length N, let )}{KL(maxarg kN

k
c = . The MSRBF 

network will thus involve at least cN (generally )NNc << candidate centres, which can be determined 
using any k-means clustering algorithms. 

 
3.3   Determine the scales 
 

For given N pairs of input-output observations, N
ttytu 1)}(),({ = , let uσ  and yσ be the standard 

derivation of N
ttu 1)}({ =  and N

tty 1)}({ = , respectively. The scale vector (6) can be chosen as 
 

y
ii

mys σβα −=)(
, , i=0, 1,…, I,                                                                                                             (10) 

u
jj

mus σβα −=)(
, , j=0, 1, …, J,                                                                                                           (11) 

 
where m=1,2, …, cN , and α >1 and 1>β are two constants. From our experience, a good choice for 
the constantsα  and β is to set 2=α and 31 ≤≤ β . Let 
 

},,1;,,0;,,0:),; ({ ),(
,,3 c

ji
mmmji NmJjIi  ===⋅= scϕD                                                         (12) 

 
The triple-indexed set 3D  is referred to as the dictionary associated with the new MSRBF networks. 

For the sake of convenience in the descriptions, rearrange the elements of 3D  so that the triple index 

),,( mji  can be indicated by a single index m=1,2,…, M , where cNJIM )1)(1( ++= , to form a single 

indexed dictionary },,1,:) ({ 31 Mmmm =∈⋅= DD φφ . In this study, the two types of dictionaries1D  

and 3D  will not be distinguished, and a uniform symbolD  will be used to indicate both of the two 
dictionaries. The network (4) can then be expressed as 
 

∑
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m
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The derivations given in this section can easily be extended to multiple-input and multiple-output 

(MIMO) situations, including the two-input and single-output case described in section 5. 
 
4.   Model term selection and the forward orthogonal regression (FOR) algorithm 
 

The MSRBF network (13) may involve a great number of candidate model terms (regressors) 
when the parameters I, J, and cN  are large. Many of these candidate model terms, however, may be 
redundant. The inclusion of redundant model terms often makes the model become oversensitive to 
the training data and is likely to exhibit poor generalisation properties. It is thus important to 
determine which terms should be included in the model. In the present study, a forward orthogonal 
regression (FOR) algorithm (Billings et al., 1989; Chen et al. 1989; Wei et al., 2006), regularised by a 
Bayesian information criterion (BIC) (Schwarz, 1978; Efron and Tibshirani, 1993), is used to solve the 
model structure detection problem for the MSRBF network models. Following Billings et al. (1989) 
and Chen et al. (1989), a squared correlation coefficient will be used to measure the dependency 
between two associated random vectors. The squared correlation coefficient between two given 
vectors x and y of size N is defined as 
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It has been shown in Wei et al. (2004b) that the above squared correlation coefficient is closely related 
to the error reduction ratio (ERR) criterion (a very useful index to indicate the significance of model 
terms),  defined in the standard orthogonal least squares (OLS) algorithm for model structure selection 
(Billings et al.1989, Chen et al. 1989).  
 
4.1   The Forward Orthogonal Regression (FOR) Algorithm 
 

Let TNyy )](,),1([ =y be a vector of measured outputs at N time instants, and 
T

mmm N )](,),1([ φφ =ĳ  be a vector formed by the mth candidate model term, where m=1,2, …, M. 

Let },,{ 1 Mĳĳ =D be a dictionary composed of the M candidate bases. From the viewpoint of 
practical modelling and identification, the finite dimensional set D  is often redundant. The model term 
selection problem is equivalent to finding a full dimensional subset },,{},,{

11 niinn ĳĳĮĮ  ==D  of 

n ( )Mn ≤ bases, from the libraryD , where
kik ĳĮ = , },,2,1{ Mik ∈  and k=1,2, …, n, so that y can 

be satisfactorily approximated using a linear combination of nĮĮĮ ,,, 21   as below 
 

eĮĮy +++= nnθθ 11                                                                                                                    (15) 
 
or in a compact matrix form 
 

eAșy +=                                                                                                                                        (16) 
 

where the matrix ],,[ 1 nĮĮA =  is assumed to be of full column rank, T
n ],,[ 1 θθ =ș  is a parameter 

vector, ande  is the approximation error.  
The model structure selection procedure starts from equation (13). Let yr =0 , and 
 

)},({maxarg
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where the function ),( ⋅⋅C is the correlation coefficient defined by (14). The first significant basis can 

thus be selected as 
11 ĳĮ = , and the first associated orthogonal basis can be chosen as 

11 ĳq = . Set  
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At the second step, let 1111
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The second significant basis can thus be chosen as 

22 ĳĮ = , and the second associated orthogonal 

basis can be chosen as )2(
2 2

qq = . Set 
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In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th 

step, a subset 1−mD , consisting of (m-1) significant bases, 121 ,,, −mĮĮĮ  , has been determined, and the 

(m-1) selected bases have been transformed into a new group of orthogonal bases 121 ,,, −mqqq  via 
some orthogonal transformation. Let  
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where 1−−∈ mj DDĳ , and 1−mr  is the residual vector obtained in the (m-1)th step. The mth significant 

basis can then be chosen as
mm ĳĮ =  and the mth associated orthogonal basis can be chosen as 

)(m
m m

qq = . The residual vector mr  at the mth step is given by 
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Subsequent significant bases can be selected in the same way step by step. From (23), the vectors 

mr and mq  are orthogonal, thus  
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By respectively summing (23) and (24) for m from 1 to n, yields 
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The residual sum of squares, 2|||| nr , which is also known as the sum-squared-error, or its variants, can 

be used to form criteria for model selection. Note that the quantity ),(ERR mm C qy=  is just equal to 
the error reduction ratio (Billings et al., 1989; Chen et al., 1989), brought by including the mth basis 

vector 
mm ĳĮ = into the model, and that ∑ =

n
m mC1 ),( qy  is the increment or total percentage that the 

desired output variance can be explained by nĮĮĮ ,,, 21  . 
The model term selection procedure can be terminated when some specified termination conditions 

are met. In the present study, the following Bayesian information criterion (BIC) (Schwarz, 1978; 
Efron and Tibshirani, 1993) is used to determine the model size 
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The mean-squared-error (MSE) in (27) is defined as 
 

∑ =
−=

N

t
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2)](ˆ)([
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MSE                                                                                                        (28) 

 
where )(ˆ ty  is the model prediction (one-step ahead) produced from the associated n term model. The 
selection procedure will be terminated at the step where the index function BIC(n) is minimized. 
 
4.2   Parameter estimation 
 

It is easy to verify that the relationship between the selected original bases nĮĮĮ ,,, 21  , and the 

associated orthogonal bases nqqq ,,, 21  , is given by 
 

nnn RQA =                                                                                                                            (29) 
 
where ],,[ 1 nn ĮĮA = , nQ  is an nN × matrix with orthogonal columns nqqq ,,, 21  , and nR  is an 

nn× unit upper triangular matrix whose entries )1( njiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by T
nn ],,,[ 21 θθθ =ș ,  for the 

model with respect the original bases, can be calculated from the triangular equation nnn gșR =  

with T
nn ggg ],,,[ 21 =g  , where )/()( k

T
kk

T
kg qqqy= . 

 
5.   Dst index modelling and forecasting 
 

In this study, the magnetosphere system was considered to be a structure-unknown (black-box) 
dynamical system. The objective was to identify a mathematical model that can be used to characterise 
and predict the activity of the Dst index. Previous studies have shown that the Dst index is mainly 
affected by two factors: the solar wind parameter, VBs, and the solar wind dynamical pressure, P. In 
the modelling procedure, the magnetosphere system was thus treated to be a two-input and single 
output system, where the Dst index was the system output, and the solar wind parameter VBs and the 
solar wind dynamical pressure P were the system inputs. Figure 1 shows 1000 data points of 
measurements of the Dst index (output, in unit of ‘nT’), the solar wind parameter VBs (input, in unit of 
‘mV/m’), and the solar wind dynamical pressure P (input, in unit of ‘nPa’), with a sampling interval 
T=1hour. This data set was used for model estimation and another separate data set with 600 data 
points, measured in another different period, was used for model performance test. 

For convenience of description, let )()( tDstty = , )()(1 tVBstu = , and )()(2 tPtu = . Eleven 

significant variables, )( ity − (i=1,2,3), )(1 jtu −  (j=1,2,3,4), and )(2 ktu −  (k=1,2,3,4), were chosen 
initially using a variable selection procedure (Wei et al., 2004b). The input vector for the MSRBF 
network model was then chosen to be )](,),(),([ 1121 txtxtx =x  ),3(,),1([ −−= tyty   ),4(,),1( 11 −− tutu   

)]4(,),1( 22 −− tutu  .  
For the Dst index related data, numerical experiments showed that it was difficult to train a 

standard single scale Gaussian kernel based RBF network using the original measurement data. In fact, 
many different kernel widths have been tested, trying to construct a standard network model using 
only a single common kernel width, but all the resulting models failed to provide effective 
representations for the data. The proposed multiscale modelling framework, however, can be used to 
describe this data set. 

The sum-of-squares clustering algorithm was applied to the training data set and the KL index 
defined by (9) suggested that the optimal number of clusters for this data set was 34 (see Fig. 2). The 
1000 data points were thus partitioned into 34 groups, and the centres of the 34 groups were chosen as 
the candidate centres for constructing the MSRBF network. The basis functions in the MSRBF 
network model (4) were of the form 
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where m=1,2, …, 34, and the mth scale vector ),,( rqp
ms  is given as 
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and the parameters )(
,
p
mys , )(

,1
q

mus  and )(
,2

r
mus  were chosen as follows:  

 
i)  20≈yσ , 11 ≈uσ , and 22 ≈uσ . 

ii)  y
pp

mys σβ −= 2)(
,  (p=1,2, 3), 1

)(
,1 2 u

qq
mus σβ −= (q=0,1,2), and 2

)(
,2 2 u

rr
mus σβ −= (r=0,1,2), withβ =2. 

 

Thus, the initial network model involves a total of 92934311 3 =×+ candidate model terms 
(regressors). The forward orthogonal regression (FOR) algorithm was applied to the 929 candidate 
model terms, over the 1000 training data points, and 13 significant regressors were selected according 
to the value of BIC, which is shown in Fig. 3. The 13 regressors were used to form the final RBF 
network model that was used for the Dst index prediction. 

Figures 4(a) presents one-step-ahead (OSA) predictions, over a typical storm period, and the value 
of MSE for OSA predictions was calculated to be 9.6768. Figure 4(b) presents the long-term 
predictions (model predicted outputs, MPO). It is clear from Fig. 4 that the identified MSRBF network 
model provides very good predictions for the Dst index, even during a period of a storm (Dst is near to 
or less than -100nT).  
 
6.   Conclusions 
 

Radial basis function networks possess several attractive properties. Motivated by these attractive 
properties, a novel hybrid multiscale radial basis function (MSRBF) network has been introduced to 
model and forecast the Dst index. Compared with traditional single scale (kernel width) RBF 
networks, the new multiscale (multi-width) RBF network is more flexible and more powerful to 
describe complex input-output dynamical systems. While the polynomial submodel in the new 
network can be used to track the linear trend of the underlying dynamical behaviour, the MSRBF 
submodel can be used to capture the main underlying nonlinear dynamics by employing multiscale 
basis functions with different centres and widths. This enhances the capability of both the linear 
models and the traditional radial basis function networks. With a linear-in-the-parameters form, the 
new network can easily be trained using the forward orthogonal regression (FOR) algorithm, which 
combines good effectiveness with high efficiency. The identified network model provides very good 
short term predictions for the Dst index, over the associated data set. Albeit there exists a large 
discrepancy between long-term predictions and the associated measurements, the model predicts the 
strong storm very well. 
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Fig. 1.   The two inputs (the solar wind  parameter VBs and the dynamical pressure, P) and the output 
(the Dst index). 
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Fig. 2.   The KL statistic, defined by (9), versus the number of centres. 
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Fig. 3.   BIC versus the number of significant regressors selected from the candidate model terms. 
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Fig. 4.   Prediction performance of the identified RBF network model, over the validation data set. (a) 
one-step-ahead predictions; (b) long-term predictions. The solid lines indicate the measurements and 
dashed lines indicate the model predictions. 
 
 
 
 


