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Abstract

The Dstindex is a key parametarhich characterisethe digurbance of the geomagnetic field in
magnetic storms. Modelling of th&st index is thus very important for the analysis of the geomagnetic
field. A databased modelling approach, @&dat obtaining efficient models based on limited input
output observational data, provides a powerful tool for analysing andafiiey geomagnetic
activities including the prediction of thest index Radial basis function (RBF) networks are an
important and popular network model for nonlinear system identification and ohyatanodelling. A
novel generalised multiscale RBF (MSRBF) network is introducedDfrindex modelling.The
proposed MSRBF network can easily be converted into a lingheparameters form and the
training of the linear network model can easily be implemented w@sirggthogonal least squares
(OLS) type algorithmOne advantage of the new MSRBF network, compared with traditional single
scale RBF networks, is that the new network is more flexittedescriling complex nonlinear
dynamical systems.

1. Introduction

The magnetosphere is a complex inputput dynamical nonlinear system, where the solar wind
and the associated parameters play the role of the inputs and the geomagnei d¢adi be
considered as the outputs. Thea index is an impognt parameter to measure the disturbance of the
geomagnetic field im magnetic storm. Several approaches have been proposed to study the dynamics
of the magnetosphere under the influence of the solar wind, and the existiaglsnean broadly be
classified into two categories: firgtrinciplebased modelling (or similar method€}ufton et al,
1975;Baker et al 1990;Goertzet al, 1993:Klimas et al, 1998;Pulkkinen and Bakerl997;0’'Brien
and McPherron2000), and dathased modellingHernandez eal., 1993;Vassiliadis et al., 1995,
1999; Takalo and Timonen1997; Wu and Lundsted1997; McPherron, 199®Boaghe et al., 2001
Watanabe et 3l.2002; Wei et al, 2004). Generally, firsprincipletbased modelling approaches
require a comprehensive physil insight of all the associated macro and micro events jointly
occurring in space weather dynamics. It is not always easy to obtain a comprehensive mathematical
model based on first principles due to the difficulty of understandhe inherent mechanisof
magnetosheric events such as storms and substorms which represent chains of complex physical
processes. Datdased modeling, or system identificatiavhich is an alternative to firgprinciple-
based modeling, is thus required to provide a desirable means for forecastingdgrstanding the
complexmagnetospheric dynamids. databased modeling, the dynamical system is considered to be
structureunknown, and a mathematical representation for the underlying dynamidsevidéntified
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from available observational data. In such a case, the solar wind parameters will be considered as
inputs and the geomagnetic indices will be treated as the outputs of the magnetosphere system.

In the literature many tygeof model structures have been proposed for neatirdynamical
systems identification, where the inner structure of the underlyirtgrsyis unknown but only the
input and output observational data are available. The NARMAX models, netrabrks, radial
basis function networks, neurofuzzy networks, avalelet networks and wavelet multiresolution
models are among the classes of the most popular model bguegdritis and Billings1985;Billings
et al, 1989, 1998Chen et al.1990; Chen and Billings, 199Bpaghe et al.2001;Liu, 2001;Harris et
al., 2002; Lundstedt et al.2002;Wei et al 2004; Billings and Wei, 2005a, 2005I8harifi et al,

2006).

Radial basis function (RBF) networks, as a special class of single Hadaarfeedforward neural
networks, have been proved to be universal appraidars (Hartman et al1990;Poggio and Girosi
1990; Park and Sandberd991) for arbitrary nonlinear functions. One advantage of RBF networks,
compared to muHiayer perceptrons (MLP), is that the linearly weighted structure of RBF networks,
where parameters in the units of the hidden layer can often Hixguie can easily be trained with a
fast speed without involving nonlinear optimization. Another advantage of RBemksiwompared
with other basis function networks, is that each basis functiahdanhidden units is a nonlinear
mapping which maps a multivariable input to a scalar value, and thus thauothér of candidate
basis functions involved in a RBF network model is not very large and does not enateas the
number of input variablescreases.

This study aims to propose a new direct approach for identifying a mathematical model for the
magnetospheric dynamics without any a priori information of the physical pescess the
magnetosphere system but only a limited observational da&chieve this objective, a novel class of
RBF networks is introduced to represent the underlying dynamics of tgeetoaphere system.
Unlike a conventional single scale (kernel width) RBiRere all the basis functions have a common
single scale, or each basis function has a single individual scale, the new RBF network uses a number
of multiscale basis functions, where each basis function has multiple scale parameters (kérsiel wid
The new network will be referred to as theiltiscale RBF network (MSRBF). The construction
procedure of such a MSRBF network is as follows. The positions (centres)uatsisgunctions ithe
MSRBF network are initially prelustered and selected using some unsupervised clustering algorithm
say thek-means clustering methoBor each selected centre, the associated scales (kernel widths) are
determined heuristically, and the selected centres and scales are restricted t@adii¥adally, an
MSRBF network is converted into a lindartheparameters model form. A forwarorthogonal
regression (FOR) algorith@illings et al., 1989; Chen et al. 198&ei et al., 2008 regularised by a
Bayesian information criterion (BICSEhwarz,1978; Efron andTibshiranj 1993, is then used to
train the MSRBF network, andpmarsimonias model, which consists of a relatively small number of
regressors, is then used to predict@iseindex.

2. Thelinear-in-the-parametersrepresentation

Consider the identification problem of a singlput and singleutput (SISO) nonlinear
dynamtal system, for whiciN pairs of inputoutput observationgy(t), y(t)} 1, , are available. Under

some mild conditions a discretiene nonlinear system can be described by the following NARX
model (Leontaritis and Billings, 1985)

y(®) = f(y(t-1,---, y(t—ny),u(t-1),--,ult—n,)) + e(t) (1)

whereu(t) , y(t) and e(t) are the system input, output and noise variabigsand n, are the

maximum lags in the input and output, respectively; faisda nonlinear mapping that is in general
unknown and needs to be identified from the available observatioagydherally assumed the(t)

is an independent identical distributed noise sequence.



The central task of system identification is to find an efficient approxinﬁafor the nonlinear

functionf from the observational data. Several model types can be used to approximate the nonlinear
functionf and different model types often involve totally different trairleyhing strategies. One of

the most commonly used methods is to approximate the nonlinear fuhesiog a series of specified

basis functions, whose local and global propertieskacsvn. One advantage of the basis function
approximation is that the expression can easily be converted into aifirthaparameters form,

which is an important class of representations for nonlinear functioroxamation and signal
processing. @mpaed to nonlineam-theparameters models that usually involve complex and-time
consuming nonlinear optimisation, lindartheparameters models are simpler to analyse and quicker

to compute and estimate.

Letd = n, +n, and x(t) =[x (t),---, %, (t)] with
~ y(t—Kk) 1<k<n,
Xk(t)_{u(t—(k—ny)) n,+1<k<n, +n, @

A general form of the linedn-theparameters regression model is given as
N M
y(t) = F(X(©) +e(t) = D O (X(1)) + &) =T (t)0+e(t) 3)
m=1

whereM is the total number of candidate regressgggx(t)) (m=1,2, ...,M) are the model regressors

andg,,are the model parameters, apl) =[4,(x(t)),--,4, (X(t))]" and @ are the associated regressor
vector and parameter vector respectively.
In the present study, a new multiscale RBF (MSRBF) network model with Gaussian kernels will

be used to construct the approxima‘Atorand this is discussed in the next section.

3. Multiscale RBF networks

The multiscale RBF (MSRBF) network aims to accommodate both the local andotie ¢
properties of the basis functions by including both small and large scales (kertted)vird the
network in a hierarchical multiscale way. In the multiscale modelling framework, a set of scale
parameters (multiple kernel widths) will be assigned to each basis function.

3.1 TheNetwork Structure

Taking the case dfingleinput and singt-output nonlinear dynamical systems as an example, the
MSRBF network possesses the following structure

R d . I J N o
Fx) =D 0% 1)+ "> 050, | (X(t)iCrSE”) 4)
k=1

i=0 j=0m=1

where 6{"**"and 655" are consints (unknown parameters), ; ,(x(t);c,,s%") is themth Gaussian

j.m

basis function of the form

n 2 no+n 2
i y X, (t _Cm y T t _Cm
¢7i,j,m(X(t);Cm,an")) =exX —E [#J - E [%J 5)
k=1 ,m k:ny+l m



wherex(t) =[x (t),---, X4 (t)] , defined by (2), is the network inpuéator, c,(t) =[c ,Cngl is the

S
centre of thanth basis function, andhé scale vectosg;” for themth basis function in the network is
defined as

S =[5 Sy S+ S ©
In,

In,
The number of the basis functions (or the number of centres) in the netvyrktise number of
scales for the output and input variables inrthie basis function isl¢1) and §+1) respectiely. Thus,
for a singleinput and singleutput system, the network involves a total\of= (1 +1)(J +1)N, basis

functions.

All given observations can be considered as candidate kernel centres providinghe
observational data set is not very loRgr a long data set, some unsupervised learning algorithms can
be used to locate the centres of the basis functions in only those regimens of the input space where
significant data are present, and supervised learning approaches can then be usetiengauork

further. The details for the determination of the centresaind thekernel widthss(, are given
below.

3.2 Determinethecentres

If the observed data set is not very long, all given observationbeaonsidered as candidate
kernel centres,,. If, however, a long data set is involved and all the observations aossibered

as candidate kernel centres, the initial MSRBF network will then include a great number of model
terms and the training of the network will be time consuming. To overcome this prathlerwelt
known kmeans clustering algorithm (Duda et, 2001), coupled with the suof-squares criterion
proposed by Krzanowski and Lai (1988), can be used to signifiaaauce the number of candidate
centres of the basis functions in the network. The-sfisguares clustering algorithm is briefly
described as below.

Assume that the data are given in the form of a matrof sizeN x p, with theith row given by

the vectorz =[z,,---,z,] representing the observation vector of fitie object. The givenN
observations can be partitioned irtogroups (clusters), denoted I6%,G,,---,G,, wherek is an

arbitrary integer between 1 ahtiLet N, be the number of objects that fall into fkie groupG; , and
Ijthe indices of theNj observations in‘:j . Definew, :Zk d. , with
j=1"

dy = 22 -2)z-2,) ©

] |1,|zelj

To choose an appropriate value koto determine the number of clusters, Krzanowski and Lai (1988)
suggested the following criterion

DIFF(K) = (k—1)%' "W, _, —k?' PW, (8)
and the optimal value d&fis the value that maximise the statigieglow

DIFF(K)

DIFF(k +1) ®)

m4m=‘



The above surof-squares clustering algorithm can be used to select the number of centnes for
MSRBF network. For a given training data set of lergttet N, =argmka>{KL( k)} . The MSRBF

network will thus involve at leadi, (generally N, << N) candidate centres, which can be determined
using anyk-means clustering algorithms.

3.3 Determinethescales

For given N pairs of irputoutput observationgu(t), y(t)},,, let o, and o, be the standard

derivation of{u(t)};, and{y(t)},\,, respectively. The scale vector (6) can be chosen as

O =pac,,i=0,1,...,, .
$h=pa"lo,,j=0,1, ...,3, an

wherem=1,2, ...,N., andea >1 and g >1are two constants. From our experience, a good choice for
the constantg and g is tosete = 2andl< f<3. Let

Dy ={(/’i,j,m(';cm7sg{j))3i =0,,1;j=0,---,;m=1---,N_} (12)

The tripleindexed seD, is referred to as the dictionary associated with the new MSRB¥ories.
For the sake of convenience in the descriptions, rearrange the elemegtsoothat the triple index
(i,j,m) can be indicated by a single index1,2,...,M, whereM = (I +D(J +1N,, to form a single
indexed dictionary®, ={¢,,(-) : ¢,, € D3, m=1---,M}. In this study, the two types of dictionarigs
andd, will not be distinguished, and a uniform symioWill be used to indicate both of the two
dictionares. The network (4) can then be expressed as

f(x®) = G (x(D) (13)

The derivations given in this section can easily be extended tgpleiiput and multipleoutput
(MIMO) situations, including the two-input and single-output case describedtinrsé.

4. Modéd term selection and theforward orthogonal regression (FOR) algorithm

The MSRBF network (13) may involve a great numbercarfididate model terms (regressors)
when the parametetsJ, and N, are large. Many of these candidate model terms, however, may be

redundant. The inclusion of redundant model terms often makes the model become oversensitive to
the traning data and is likely to exhibit poor generalisation properties. lhus important to
determine which terms should be included in the model. In the present afiodyard orthogonal
regression (FOR) algorithBillings et al., 1989; Chen et al. 198/Nei et al., 2008 regularised by a
Bayesian information criterion (BIGpchwarz,1978; Efron andibshirani 1993),is used tcsolve the

model structure detection problem for the MSRBF network models. Following Biléh@l. (1989)

and Chen et al.1089),a squared correlation coefficient will hesed to measure the dependency
between two associated random vectors. The squared correlation coefiieiesgien two given
vectorsx andy of sizeN is defined as



T\ 2 N V)2
Cley)= N (2 (14)
Y)Y

It has been shown in Wei et al. (2004b) that the abquared correlation coefficient is closely related
to the error reduction ratio (ERR) criterion (a very useful indexdaatethe sgnificance of model
terms), defined in the standard orthogonal least squares (OLS) algorithm fdrsinoctere selection
(Billings et al.1989, Chen et al. 1989).

4.1 TheForward Orthogonal Regression (FOR) Algorithm

Let y=[y®,---,y(N)]" be a vector of measured outputs & time instants, and

0, =[¢,@,.¢,(N)]" be a vector formed by theth candidate model term, whemne=1,2, ..., M.
Let D={¢,,---,9,,} be a dictionary composed of ti candidate basedssrom the viewpoint of
practical nodelling and identification, the finite dimensional getis often redundant.fle model term
selection problem is equivalent to finding a full dimensional subsefa,, -, a.} ={¢; ,---,9; } of

n (n< M) bases, from the libryd, whereua, =0 . I, €{12---,M} andk=1,2, ...,n, so thaty can
be satisfactorily approximated using a linear combinatiom,af,,---,a,, as below

y=060,++06,a,+e (15)
or in a compact matrix form
y=A0+e (16)

where the matriA =[a,,---,a,] is assumed to be of full column rartks=[6, ,---,an]T is a parameter

vector, ane is the approximation error.
The model structure selection procedure starts from equation (13), £gt, and

ty=argmax{C(y.¢;)} 17)

where the functiof(-,-) is the correlation coefficient defined by (14he first significant basis can
thus be selected ag =¢, , and the first associated orthogobasiscan be chosen ag =¢, . Set

.
ry=ro— ;/Tgl d; (18)
101

At the second step, lef” = ¢, —[(¢]q,)/(a1d,)]d,, whereg, €2 and j = ¢, . Define
¢, =argmax{C(y,q;”)} (19)
1#6,

The second significant basis can thus be chosery asp, , and the second associated orthogonal

basiscan be choseas g, =q{” . Set



T
r,=r— éng d, (20)
20>

In general, therth significant model term can be chosen as follodssume that at thentl)th
step, a subset, _,, consisting of if+1) significantbasesa,,a,, --,a,_,, has been determined, and the
(m1) selectedbaseshave been transformed into a new group of orthogbasésg,,q,,---,q,,, Vvia
some orthogonal transformatidret

m-1,T
m (Pq
q(j):q)j_z % ka (21)
k=1 9k Ak
ty=arg max {C(y,q{™)} (22)

j#0 I<k<m-1

wherep; e D-9,,;, andr,, , is the residual vector obtained in the-1)th step. Themth significant
basis can then be chosenogs=¢, and themth associated orthogonahsiscan be chosen as

dm=0.". The residual vector,, at themth step is given by

:
Ylng (23)
A

m-1

Subsequent significariasescan be selected in the same way step by &epm (23), the vectors
rn,andq, areorthogonal, thus

1 [Pl o | — &-m) (24)

Al

By respectively summing (23) and (24) farfrom 1 ton, yields

n T
yzzzTgmqm+rn (25)
m=1 m-im
n T 2
Ir, ||2=||y||2—2% (26)
m=1 m-im

The residual sum of squardp,, |, which is also known as the stsguareeerror, or its variants, can
be used to form criteria for model selectidlote that the quantit{RR,, = C(y,q,,) is just equal to
the error reduction ratio (Billings et all989;Chen et al.1989), brought by including theth bass

vectore,, = ¢, into the model, and thaznm:lC(y,qm) is the increment or total percentage that the

desired output variance can be explaibgd,,a,,--,a,,.

The model term selection procedure can be terminated when some specified termination conditions
are met. In the present study, the following Bayesian information critéBii) (Schwarz 1978
Efron andTibshiranj 1993 is used to determine the model size

BIC(n) = N +nE|n_(N)—1]

MSE@)=P+%$QQPE#E 27)



The mearsquareeerror (MSE) in (27 is defined as
MSE=--3" [y(t) - SO 28
SEPIMSORM0) (28)

wherey(t) is the model prediction (orstep ahead) produced from the associateefm model. The
selection procedure will be terminated at the step where the index functiam) BI@(inimized.

4.2 Parameter estimation

It is easy to verify that the laionship between the selected original basgs,,---,a,,, and the
associated orthogonal basgsy,,---,q,,, IS given by

A, =0Q,R, (29)

where A, =[ay,---,a,], Q, iS an N xnmatrix with orthogonal columrsg,q,,---,q,, andR,, is an
nxn unit upper triangula matrix whose entries u; 1<i<j<n) are calculated during the

orthogonalization procedure. The unknown parameter vector, denotd=9¢,,6,,---,6,]", for the
model with respect the original bases, can be calculated from the triangukiror® 6, =9,

withg, =[g;, 9z, 9,1" , whereg, = (y"aq,) /(@) -
5. Dstindex modelling and for ecasting

In this study, the magnetosphere system was considered to be a stiokhown (blackbox)
dynamical system. The objective was to identify a mathematical model that can be used to characteris
and predict the activity of thBst index. Previous studies have shown that@iseindex is mainly
affected by two factors: the solar wind parame#s, and the solar wind dynanaicpressureP. In
the modelling procedure, the magnetosphere system was thus treated to baputaod single
output system, where thegst index was the system output, and sloéar wind parameterBs and the
solar wind dynamical pressuf@ were the gstem inputs. Figure 1 showk)00 data points of
measurements of tHast index (output, in unit of ‘nT’), the solar wind parame#d; (input, in unit of
‘mV/m’), and the solar wind dynamical pressidinput, in unit of ‘nPa’) with a sampling interval
T=1hour.This data set was used for model estimation and another separate deith 660 data
points, measured in another different period, was used for model performance test

For convenience of description, Isf(t)=Dst(t) , u,(t)=VBs(t) , and u,(t)=P(t) . Eleven
significant variablesy(t—i) (i=1,2,3), y,(t—j) (=1,2,3,4), andu,(t-k) (k=1,2,3,4), were chosen
initially using a variable selection procedure (Wei et 2004b) The input vector for the MSRBF
network model was then chosen taxbg x, (t), X, (t),--, X, ()] =[y(t-D,---, y{t-3), y(t-1),---,u(t-4),
Uy(t=1), -, Uy(t—4)] .

For the Dst index related data, numerical experiments skthat it was difficult to trax a
standard single scale Gaussian kernel based RBF network using the original measurement data. In fact,
many different kernel widths have been tested, trying to construct a standard networlusimgle
only a single common kernel width, but all the resulting models failed to proviéetied
representations for the data. The proposed multiscale modelling framework, however, cantbe used
describe this data set.

The sum-ofsquares clustering algorithm was applied to the training data seheri{L index
defined by (9) suggested that the optimal number of clusters for this data st (ses Fig. 2). The
1000 data points were thus partitioned iBtbgroups, and the centres of 8#groups were chosen as
the candidate centres for constructing the MSRiEwvork. The basis functions in the MSRBF
network model (4) were of the form



Z g 2 2
¢i,j,m(X(t)§Cm,Sﬁqp’q’r)) =ex —i[m] _Z{Mj _Z[Xk(t)‘cm,kJ (30)

r
S s prd G = S
wheren=1,2, ..., 34, and theth scale vectos"*" is given as

ar) _ r r
s =8y Sy S S 2+ 2 (31)
13 14 14

and the parametes),, s, ands(?,, were chosen as follows:

) o,~20, o,~1,ands,, ~2.
i) s =p2"P0, (p=1,2, 3),5, =2 %, (0=0,1,2), ancy,, = B2 0, (r=0,1,2), withB =2.

Thus, the initial network model involves a total di+3°x34=929 candidate model terms
(regresers). The forward orthogonal regression (FOR) algorithm was applied t92theandidate
model terms, over the 1000 training data points, and 13 significant regressors were satectitba
to the value of BIC, which is shown in Fig. 3. The 13 regressers used to form the final RBF
network model that was used for et index prediction.

Figures 4(a) presents ostepahead (OSA) predictions, over a typical storm period, and the value
of MSE for OSA predictios was calculated to €9.6768. Figure 4(b presents the longgrm
predictions (model predicted outputs, MPO). It is clear from Fig. 4 that thefiddMISRBF network
model provides very good predictions for th& index, even during a period okstorm Qst is near to
or less than100nT).

6. Conclusions

Radial basis function networks possess several attractive properties. Motivated by these attract
properties, a novel hybrid multiscale radial basis function (MSRBF) metiags been introduced to
model and forecast théDst index. Compagd with traditional single scale (kernel width) RBF
networks, the new multiscale (multidth) RBF network is more flexible and more powerful to
describe complex inpwutput dynamical systems. While the polynomial submodel in the new
network can be used tirack the linear trend of the underlying dynamical behaviour, the MSRBF
submodel can be used to capture the main underlying nonlinear dynamics byimgnpiaitiscale
basis functions with different centres and widths. This enhances the dgpabibioth the linear
models and the traditional radial basis function networks. With arlingaeparameters form, the
new network can easily be trained using the forward orthogonal regreBS)&) @lgorithm, which
combines good effectiveness with high efficgnThe identified network model provides very good
short term predictions for thBst index, over the associated data set. Albeit there exists a large
discrepancy between lottgrm predictions and the associated measurements, the model predicts the
strongstorm very well.
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Fig. 1. The two inputs (the solar wind param&t®s and the dynamical pressuf®, and the outypt
(the Dst index).
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Fig. 4. Prediction performance of the identified RBF network model, over lidati@an data set. (a)

onestepahead predictions; (b) lortgrm predictims. The solid lines indicate the measurements and

dashed lines indicate the model predictions.



