This is a preprint and may not have undergone formal peer review
Nuermaimaiti, R., Bogachev, L.V. orcid.org/0000-0002-2365-2621 and Voss, J. (2026) A citation index bridging Hirsch's h and Egghe's g. [Preprint - arXiv]
Abstract
We propose a citation index $ν$ (``nu'') and show that it lies between the classical $h$-index and $g$-index. This idea is then generalized to a monotone parametric family $(ν_α)$ ($α\ge 0$), whereby $h=ν_0$ and $ν=ν_1$, while the limiting value $ν_\infty$ is expressed in terms of the maximum citation.
Metadata
| Item Type: | Preprint |
|---|---|
| Authors/Creators: |
|
| Copyright, Publisher and Additional Information: | This is an open access preprint under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
| Dates: |
|
| Institution: | The University of Leeds |
| Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) |
| Date Deposited: | 28 Jan 2026 15:28 |
| Last Modified: | 28 Jan 2026 15:28 |
| Identification Number: | 10.48550/arxiv.2504.20600 |
| Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:236733 |

CORE (COnnecting REpositories)
CORE (COnnecting REpositories)