Machine learning risk stratification strategy for multiple myeloma: Insights from the EMN–HARMONY Alliance platform

Orgueira, A.M., Perez, M.S.G., D'Agostino, M. et al. (30 more authors) (2025) Machine learning risk stratification strategy for multiple myeloma: Insights from the EMN–HARMONY Alliance platform. HemaSphere, 9 (10). e70228. ISSN: 2572-9241

Abstract

Metadata

Item Type: Article
Authors/Creators:
  • Orgueira, A.M.
  • Perez, M.S.G.
  • D'Agostino, M.
  • Cairns, D.A. ORCID logo https://orcid.org/0000-0002-2338-0179
  • Larocca, A.
  • Palacios, J.J.L.
  • Wester, R.
  • Bertsch, U.
  • Waage, A.
  • Zamagni, E.
  • Míguez, C.P.
  • Martínez, J.A.R.
  • K., E.
  • Crucitti, D.
  • Salwender, H.
  • Dall'Olio, D.
  • Castellani, G.
  • Fiel, M.P.
  • Bringhen, S.
  • Zweegman, S.
  • Cavo, M.
  • Iqbal, S.
  • Rivas, J.M.H.
  • Bruno, B.
  • Cook, G.
  • Kaiser, M.F.
  • Goldschmidt, H.
  • Van De Donk, N.W.C.J.
  • Jackson, G.
  • San‐Miguel, J.F.
  • Boccadoro, M.
  • Mateos, M.-V.
  • Sonneveld, P.
Copyright, Publisher and Additional Information:

© 2025 The Author(s). HemaSphere published by John Wiley & Sons Ltd on behalf of European Hematology Association.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Dates:
  • Accepted: 18 August 2025
  • Published (online): 9 October 2025
  • Published: 9 October 2025
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds)
Funding Information:
Funder
Grant number
Cancer Research UK Supplier No: 138573
A25447
Cancer Research UK Supplier No: 138573
CTUQQR-Dec22/100002
Celgene Corporation
RV-MM-PI-0251
Merck Sharp & Dohme Ltd
MERCK - MYELOMA XI
Date Deposited: 15 Oct 2025 10:18
Last Modified: 15 Oct 2025 10:18
Published Version: https://onlinelibrary.wiley.com/doi/10.1002/hem3.7...
Status: Published
Publisher: Wiley
Identification Number: 10.1002/hem3.70228
Related URLs:
Open Archives Initiative ID (OAI ID):

Export

Statistics