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Abstract
Traditional risk stratification in multiple myeloma (MM) relies on clinical and cytogenetic parameters but has limited predictive

accuracy. Machine learning (ML) offers a novel approach by leveraging large datasets and complex variable interactions. This study

aimed to develop and validate novel ML‐driven prognostic scores for newly diagnosed MM (NDMM), with the goal of improving

upon existing ones. To this end, we analyzed data from the EMN–HARMONY MM cohort, comprising 14,345 patients, including

10,843 NDMM patients enrolled across 16 clinical trials. Three ML models were developed: (1) a comprehensive model in-

corporating 20 variables, (2) a reduced model including six key variables (age, hemoglobin, β2‐microglobulin, albumin, 1q gain, and

17p deletion), and (3) a cytogenetics‐free model. All models were internally validated using out‐of‐bag cross‐validation and

externally validated with data from the Myeloma XI trial. Model performance was evaluated using the concordance index (C‐index)
and time‐dependent area under the receiver operating characteristic curve (ROC‐AUC). The comprehensive model achieved

C‐index values of 0.666 (training) and 0.667 (test) for overall survival (OS) and 0.620/0.627 for progression‐free survival (PFS). The

reduced model maintained accuracy (OS: 0.658/0.657; PFS: 0.608/0.614). The cytogenetics‐free model showed C‐index values of

0.636/0.643 for OS and 0.600/0.610 for PFS. Incorporating treatment type and best response to first‐line treatment further

improved performance. The new prognostic models improved over the International Staging System (ISS), Revised International

Staging System (R‐ISS), and Second Revision of the International Staging System (R2‐ISS) and were reproducible in real‐world and

relapsed/refractory MM, including daratumumab‐treated patients. This ML‐based risk stratification strategy provides individualized

risk predictions, surpassing traditional group‐based methods and demonstrating broad applicability across patient subgroups. An

online calculator is available at https://taxonomy.harmony-platform.eu/riskcalculator/.
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INTRODUCTION

Multiple myeloma (MM) is a hematologic malignancy characterized by
the clonal proliferation of plasma cells within the bone marrow, leading
to a spectrum of clinical manifestations, including osteolytic lesions,
renal dysfunction, anemia, and immunodeficiency.1 Despite significant
advancements in therapeutic strategies—including proteasome in-
hibitors (PIs), immunomodulatory drugs, and monoclonal antibodies—
MM remains largely incurable, with a median overall survival (OS) of
approximately 5–10 years, depending on baseline prognostic factors.2

Although risk‐adapted treatment is not yet standard in MM, accurate
risk stratification remains crucial, as it informs treatment decisions,
facilitates personalized patient management, and serves as a key
stratification variable in the design of new clinical trials.3

Traditional MM risk stratification models, such as International
Staging System (ISS),4 International MyelomaWorking Group (IMWG),5

Revised International Staging System (R‐ISS),6 or the newer Mayo Ad-
ditive Staging System (MASS)7 and Second Revision of the International
Staging System (R2‐ISS),8 stratify patients into broad risk groups based
on a limited set of clinical and cytogenetic variables. However, these
models lack granularity, as they do not provide individualized, patient‐
specific risk estimates or fully exploit the richness of available clinical
and cytogenetic data. Additionally, they fail to incorporate treatment‐
specific variables, despite their known influence on prognosis, and re-
main static, without dynamic recalibration as disease status evolves.9–11

These limitations underscore the need for more refined, data‐driven
approaches to MM risk stratification.

Machine learning (ML) presents a transformative opportunity for
risk stratification in MM by leveraging large‐scale datasets and identi-
fying complex, nonlinear relationships among multiple prognostic
variables.12 ML algorithms can process high‐dimensional data, refine
prognostic accuracy, and generate individualized risk assessments that
surpass traditional models.13 While ML‐driven prognostic models have
demonstrated potential in oncology,14–16 their implementation in MM
remains limited due to challenges in data heterogeneity, model inter-
pretability, and the need for robust validation across diverse patient
populations. The HARMONY Consortium,17 integrating data from mul-
tiple clinical trials and patient registries, offers an unprecedented

platform to address these challenges. By integrating clinical and cyto-
genetic data with longitudinal follow‐up and treatment response in-
formation, this initiative enables the development of ML‐based
prognostic tools with improved generalizability and clinical applicability.

This study introduces an ML strategy for risk stratification in
newly diagnosed multiple myeloma (NDMM), trained on the large
multicenter dataset from the EMN–HARMONY Consortium. Relying
exclusively on data routinely collected in standard care, the model
outperforms established scoring systems and delivers more accurate
prognostic estimates for patients treated across diverse clinical set-
tings. Importantly, it requires no molecular inputs and maintains high
predictive accuracy even when cytogenetic data are unavailable,
maximizing its practicality for everyday use.

MATERIALS AND METHODS

Data source and sample size justification

This study used data from the EMN–HARMONY Consortium, a col-
laborative initiative under the European Myeloma Network that in-
tegrates clinical and cytogenetic information from multiple sources.
Prior to data access, the research team submitted a predefined ana-
lysis proposal—detailing objectives, modeling strategy, and evaluation
plan—to the EMN–HARMONY Scientific Committee. The proposal
was reviewed and approved, ensuring methodological transparency
and minimizing the risk of selective reporting.

The analyzed dataset comprised 14,345 MM patients, comprising
10,843 NDMM patients from 16 clinical trials and 3502 patients from
relapsed/refractory trials and real‐world registries (Supporting Informa-
tion S1: Data 1). To ensure direct comparability, the dataset was parti-
tioned into training and test sets following the same methodology as
that used for the development of the R2‐ISS score,8 with the Myeloma
XI,18 VISTA,19 and POLLUX20 trials serving as the external validation
cohorts. In addition, further evaluations were performed on 2221
real‐world patients from the EMN–HARMONY dataset (Table 1).

Written informed consent was obtained from all patients before
enrollment in the source trials, which were approved by the
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institutional review boards and ethics committees of all partici-
pating centers and conducted in accordance with the Declaration
of Helsinki. After the acquisition of data from the source trials, all
patient data were de facto anonymized in compliance with the
General Data Protection Regulation, harmonized and transformed
using an Observational Medical Outcomes Partnership Common
Data Model, and subsequently integrated in the EMN–HARMONY
platform.

Twenty predictors common to all studies in the database were
used. According to the quantitative framework by Riley et al. for time‐
to‐event prediction models,21 a 20‐predictor survival model with
anticipated R² = 0.20 and 35% cumulative mortality at 6.6 years re-
quires approximately 5000 participants (~1700 deaths) to ensure a
global shrinkage ≥0.90, discrimination optimism ≤0.01, and ≤10% re-
lative risk variance. Our development cohort supplies 7702 patients,
with 3214 deaths and 5332 progression events, yielding ~161 and
267 events per predictor for OS and progression‐free survival (PFS),
respectively—well above both the classical ≥10 and the ≥50 events‐
per‐predictor thresholds recommended for ML models—and an ex-
pected shrinkage of ≈0.98.

Development of the baseline risk stratification tools

The risk stratification tool was developed by integrating a compre-
hensive set of clinical, cytogenetic, and biochemical variables to
capture the complex prognostic landscape of MM (Figure 1). Clinical
variables included patient age, hemoglobin, beta‐2 microglobulin, al-
bumin, and upfront treatment data. Cytogenetic markers en-
compassed key recurrent abnormalities including 1q gain and 17p
deletion. Biochemical parameters included lactate dehydrogenase
(LDH) levels and renal function markers. To address missing data, a
Random Forest model22 was used for baseline variable imputation,
preserving critical prognostic information and enhancing data com-
pleteness (see Supporting Information S1: Data 2 for details on the
computational environment and software versions).

To construct the risk stratification models, a Random Survival Forest
(RSF) algorithm23 was used for its ability to handle high‐dimensional data
and model complex, nonlinear interactions among variables. The EMN–
Harmony Consortium dataset was used to train the RSF model, with
variable importance metrics guiding the selection of predictive features.
Hyperparameter tuning (number of variables randomly sampled at each
split and minimum terminal node size) was performed using a standard
grid‐search procedure, selecting the combination that maximized the
out‐of‐bag (OOB) concordance index (C‐index). Dimensionality reduc-
tion was performed to eliminate redundant or weakly informative
variables, thereby enhancing the model's efficiency and interpretability.
The final model was optimized to maximize discriminative ability while
minimizing the number of variables, ensuring high predictive accuracy
and clinical feasibility.

Validation of the baseline risk stratification tools

The developed risk stratification tools were subjected to rigorous
validation to ensure their robustness and generalizability across di-
verse patient populations (Figure 1). Internal validation aimed at
preventing overfitting was performed using OOB cross‐validation
within the training set, leveraging the bootstrapping mechanism of
the RSF algorithm to obtain unbiased performance estimates. Ex-
ternal validation was conducted using data from the Myeloma XI,18

VISTA,19 and POLLUX20 trials, which served as independent valida-
tion cohorts. Furthermore, an independent real‐world cohort of 2221
patients from the EMN–HARMONY dataset (Table 1) was used for
external validation, with analyses restricted to OS due to the lack of
PFS annotation. These external validations were essential for asses-
sing the model's generalizability and ensuring consistent predictive
accuracy across diverse clinical settings and patient populations.

Model discrimination was quantified using the C‐index and the
time‐dependent area under the receiver‐operating‐characteristic
curve (time‐dependent AUC). The C‐index measures how well
predicted risks order observed survival times, ranging from 0.5 (no
discrimination) to 1.0 (perfect discrimination); 95% confidence in-
tervals (CIs) were derived with the concordance function of the
survival package in R.24,25 The time‐dependent AUC evaluates dis-
crimination at successive time points, providing a dynamic assess-
ment of predictive accuracy, and was computed using the timeROC
package.26 Both metrics were computed for OS and PFS prediction
models.

To account for events that preclude the primary outcome, we fit
Fine–Gray subdistribution hazard models, defining disease progres-
sion as the event of interest and death prior to progression as
the competing event. Cumulative‐incidence functions, along with
subdistribution‐specific C‐index and time‐dependent AUC values,
were estimated using the riskRegression package in R.27–29

TABLE 1 Summary of clinical trials included in the EMN–HARMONY

cohort, detailing autologous stem cell transplantation (ASCT) eligibility and

inclusion in the previous Second Revision of the International Staging System

(R2‐ISS) study.8

Study N
Part of the
R2‐IIS study

ASCT
eligibility

EMN01 654 Yes No

EMN02/HO95 MM 1493 Yes Yes

GEM05MAS65 259 Yes No

GEM05MENO65 389 Yes Yes

GEM2010MAS65 236 Yes No

GIMEMA‐MM‐03‐05 511 Yes No

HOVON 65 MM 826 Yes Yes

HOVON 87 MM 630 Yes No

IST‐CAR‐506 58 Yes No

MM‐BO2005 474 Yes Yes

MM5 502 Yes Yes

MMY2069 152 Yes No

Myeloma XI 3771 Yes Both

RV‐MM‐EMN‐441 387 Yes Yes

RV‐MM‐PI‐114 102 Yes Yes

RV‐MM‐PI‐209 399 Yes Yes

Wilhelminen Hospital 24 No ‐

Triple Class Refractory

La Fe Hospital 84 No ‐

Triple Class Refractory

Med University Hannover 19 No ‐

Triple Class Refractory

Registry of Gammapathies
in Castilla and León

2094 No ‐

VISTA 682 No ‐

POLLUX 599 No ‐

Total 14,345 10,843 ‐
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Model calibration was assessed by ranking individual‐level predicted
risks and grouping them into deciles of equal size. Within each decile, the
mean predicted event probability (“expected”) was compared visually
with the observed event rates estimated from Kaplan–Meier curves at
the target horizon. Calibration was evaluated graphically without formal
estimation of the calibration intercept or slope.

Visualization of risk score

To visualize the distribution of risk scores, we first computed the 25th
(Q1), 50th (Q2), and 75th (Q3) percentiles of the OOB risk estimates
in the training cohort for both OS and PFS, separately for the
cytogenetics‐based and cytogenetics‐free models. Patients were then
grouped into quartiles (Q1–Q4) based on these thresholds, which
were applied unchanged to the independent Myeloma XI test set.
Kaplan–Meier curves for each end point were plotted by quartile to
depict survival across the four risk strata.

Comparison with existing models

To evaluate the performance of the ML‐based risk stratification model
against established prognostic scoring systems, we compared C‐indexes
and time‐dependent AUCs. The analysis was restricted to patients with
complete annotations for ISS, R‐ISS, and R2‐ISS variables to minimize
potential bias from imputation. This approach ensured a fair comparison,
accurately reflecting the predictive capabilities of each model and high-
lighting the added prognostic value of the ML‐driven prognostic scores.

Development of treatment‐informed and dynamic risk
scores

To further refine prognostic accuracy, we developed a treatment‐
informed risk score incorporating upfront therapy regimens, followed by a

dynamic risk score integrating response to first‐line therapy (Figure 1). The
treatment‐informed score was constructed by analyzing patients treated
with PIs, immunomodulatory imides (IMiDs), or PI–IMiD combinations.
These treatment categories were used to recalibrate the baseline risk
models, thereby generating treatment‐specific prognostic scores. This
approach accounts for the impact of initial therapy on outcomes, po-
tentially improving the model's predictive performance. Owing to the
adaptive design of the MyelomaXI trial, patients could not be un-
ambiguously assigned to a single first‐line treatment category; therefore,
treatment‐specific results for this cohort are not presented.

For the dynamic model, we included only patients with a docu-
mented best response to first‐line therapy. PFS and OS times were
re‐anchored at the date of that response, classified as complete response
(CR) or better, very good partial response (VGPR), partial response (PR),
stable disease (SD), or progressive disease (PD). Landmarking survival in
this way mitigates immortal‐time bias and provides a conditional risk
estimate applicable to the clinical scenario in which a response has been
confirmed. Patients who progressed before an evaluable response or
lacked response data were not included in this analysis, as they fall outside
the model's intended scope. Risk estimation and recalibration were carried
out using the RSF algorithm. Best response data were not available for the
MyelomaXI cohort within the EMN–HARMONY dataset; consequently,
dynamic model results for that trial are not reported.

Implementation and deployment of the web‐based
risk calculator data

The risk calculator was developed as a web‐based interactive application
using Shiny,30 featuring a modular UI‐server architecture to ensure
scalability, flexibility, and seamless integration with the ML prognostic
models. The workflow follows a structured sequence where users
first select the desired risk model—baseline, treatment‐informed, or
dynamic. Patient‐specific variables are then entered and validated
against predefined clinical ranges. The selected RSF model computes an

F IGURE 1 Graphical workflow of the study, outlining the methodology used for data preprocessing, model development, validation, and performance

evaluation. ISS, International Staging System; OS, overall survival; PFS, progression‐free survival; R‐ISS, Revised International Staging System; R2‐ISS, Second
Revision of the International Staging System.
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individual risk score that is immediately translated into a percentile rank
relative to the full training cohort. This percentile reflects relative risk: for
example, a value at the 80th percentile indicates that the patient's risk
score is higher than 80% of the training population. For added clinical
context, the percentile is also displayed separately for the transplant‐
eligible and transplant‐ineligible subgroups of that same cohort. Results
are visualized as color‐coded horizontal bars, enabling rapid, intuitive
interpretation of patient‐specific risk stratification for PFS and OS.

RESULTS

Study population characteristics

This study included 14,345 patients with MM from the EMN–
HARMONY Consortium, comprising 10,843 newly diagnosed patients
from 16 clinical trials, 2221 patients from real‐world registries, and 1281
patients in trials for relapsed or refractory MM (Table 1, Supporting In-
formation S1: Data 1). Of these, 7702 newly diagnosed patients com-
prised the training set, including 4572 (64.6%) classified as transplant‐
eligible and 2500 (35.3%) as transplant‐ineligible. The test set was derived
from the Myeloma XI18 trial and included 3771 patients, encompassing
both transplant‐eligible and transplant‐ineligible individuals.

In the training set, 35.8% of patients were classified as ISS stage I
(low risk), 39.6% as stage II (intermediate risk), and 24.6% as stage III (high
risk). By comparison, in the test set, 25.7% of patients were categorized as
ISS stage I, 42.2% as stage II, and 32.1% as stage III. According to the
R‐ISS system, 13.5%, 68.8%, and 17.7% of patients in the training set
were classified as low‐, intermediate‐, and high‐risk categories, respec-
tively, whereas in the test set, these proportions were 12.9%, 71.2%, and
15.8%, respectively. The median age was 62 years (interquartile range
[IQR] 14.2 years) in the training set and 68 years (IQR 14.0 years) in the
test set.

TABLE 3 Concordance index (C‐index) values for overall survival and progression‐free survival predictions using the baseline and dynamic risk models

developed in the study.

Model End point Training set (C‐index) Test set (C‐index)

Complete model (20 variables) OS 0.666 (0.656–0.675) 0.667 (0.651–0.677)

PFS 0.620 (0.612–0.628) 0.627 (0.613–0.635)

Reduced model (6 variables) OS 0.658 (0.646–0.666) 0.657 (0.642–0.668)

PFS 0.608 (0.604–0.620) 0.614 (0.600–0.622)

Cytogenetics‐free model (12 variables) OS 0.645 (0.635–0.655) 0.654 (0.641–0.668)

PFS 0.604 (0.596–0.612) 0.624 (0.613–0.635)

Cytogenetics‐free model (4 variables) OS 0.636 (0.629–0.649) 0.643 (0.642–0.668)

PFS 0.600 (0.592–0.608) 0.61 (0.600–0.622)

Treatment‐oriented risk model (cytogenetics‐based) OS 0.664 (0.653–0.674) —

PFS 0.623 (0.614–0.631) —

Treatment‐oriented risk model (cytogenetics‐free) OS 0.645 (0.634–0.655) —

PFS 0.607 (0.598–0.616) —

Dynamic risk model (cytogenetics‐based) OS 0.699 (0.689–0.709) —

PFS 0.701 (0.693–0.708) —

Dynamic risk model (cytogenetics‐free) OS 0.682 (0.672–0.692) —

PFS 0.693 (0.684–0.699) —

Abbreviations: OS, overall survival; PFS, progression‐free survival.

TABLE 2 Overview of missing data across the variables analyzed in the

EMN–HARMONY cohort, specifying the proportion of unavailable data for

each predictor.

Variable Non missing Missing Missing data (%)

Age 12,956 1389 9.68

1q gain 4330 10,015 69.82

1p del 1351 12,994 90.58

13q del 4975 9370 65.32

17p del 7203 7142 49.79

t(11;14) 4853 9492 66.17

t(14;16) 5875 8470 59.04

t(4;14) 7039 7306 50.93

t(6;14) 5873 8472 59.06

Hemoglobin 3284 11,061 77.11

Leukocytes 3256 11,089 77.3

Platelets 3256 11,089 77.3

Albumin 13,842 503 3.51

LDH 11,020 3325 23.18

Beta‐2 microglobulin 12,292 2053 14.31

Monoclonal spike 1903 12,442 86.73

Involved free‐light chain 1341 13,004 90.65

Urine monoclonal spike 1146 13,199 92.01

Bone marrow plasma cells 7320 7025 48.97

ISS 11,986 2359 16.44

Abbreviations: ISS, International Staging System; LDH, lactate dehydrogenase.
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Over a median follow‐up of 6.6 years (95% CI, 6.5–6.7) in the
training set, the median OS was 7.2 years (95% CI, 7.0–7.5) and the
median PFS was 2.8 years (95% CI, 2.7–2.9). In the test set, the median
follow‐up was 5.4 years (95% CI, 5.3–5.6), with a median OS of 5.6 years
(95% CI, 5.4–5.9) and a median PFS of 2.0 years (95% CI, 2.0–2.1).

When the entire set of variables was considered, the overall
missing data rate was 35.4% in the training set and 45.6% in the test
set, with substantial variation across variable types (Table 2). To ad-
dress these gaps, Random Forest–based imputation was performed,
ensuring inclusion of all patients in subsequent analyses and reducing
potential bias from missing data.

Development and performance of the baseline risk
models

Initially, we developed a comprehensive RSF model using the full set
of variables, incorporating 20 clinical, cytogenetic, and biochemical
variables to estimate OS and PFS (Table 3). The full model de-
monstrated clinically relevant discrimination, achieving a C‐index of
0.666 (95% CI, 0.656–0.675) for OS in the training set and 0.667
(95% CI, 0.651–0.677) in the test set. For PFS, the model achieved a
C‐index of 0.620 (95% CI, 0.612–0.628) in the training set and
0.627 (95% CI, 0.613–0.635) in the test set.

F IGURE 2 Kaplan–Meier curves for the cytogenetics‐based model, with patients stratified into quartiles (Q1–Q4, determined by the 25th, 50th, and 75th

percentiles) of continuous risk scores calculated separately for overall survival (OS) and progression‐free survival (PFS) prediction. (A) OS in the training cohort,

(B) OS in the test cohort, (C) PFS in the training cohort, and (D) PFS in the test cohort.
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To refine the model while maintaining predictive accuracy, we used
variable importance measures derived from the RSF algorithm to reduce
the number of predictors. The resulting reduced model retained six key
predictors (age, hemoglobin, beta‐2 microglobulin, albumin, 1q gain, and
17p deletion), achieving a C‐index of 0.658 (95% CI, 0.646–0.666) for OS
in the training set and 0.657 (95% CI, 0.642–0.668) in the test set, and
for PFS, it achieved 0.608 (95% CI, 0.604–0.620) and 0.614 (95% CI,
0.600–0.622), respectively (Figures 2 and 3; Supporting Information S2:
Figure 1 and Supporting Information S3: Figure 2).

Additionally, we explored a cytogenetics‐free model by excluding
all cytogenetic variables during training. This 12‐variable model main-
tained strong predictive performance, with a C‐index of 0.645

(95% CI, 0.635–0.655) for OS in the training set and 0.654 (95% CI,
0.641–0.668) in the test set, and 0.604 (95% CI, 0.596–0.612) and
0.624 (95% CI, 0.613–0.635) for PFS, respectively. Further di-
mensionality reduction produced a four‐variable model—retaining the
same non‐cytogenetic predictors (age, hemoglobin, beta‐2 micro-
globulin, and albumin) as the cytogenetics‐based model—achieving a
C‐index of 0.636 (95% CI, 0.629–0.649) for OS in the training set and
0.643 (95% CI, 0.642–0.668) in the test set, and 0.600 (95% CI,
0.592–0.608) and 0.610 (95% CI, 0.600–0.622) for PFS, respectively
(Figures 2 and 3).

A subsequent grid search over the number of variables randomly
sampled at each split and terminal‐node size showed that hyperparameter

F IGURE 3 Kaplan–Meier curves for the cytogenetics‐free model, with patients stratified into quartiles (Q1–Q4, determined by the 25th, 50th, and 75th

percentiles) of continuous risk scores calculated separately for overall survival (OS) and progression‐free survival (PFS) prediction. (A) OS in the training cohort,

(B) OS in the test cohort, (C) PFS in the training cohort, and (D) PFS in the test cohort.
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tuning marginally improved the C‐index by <0.01 in all scenarios—
differences entirely within the default model's 95% CIs—so the default
RSF settings were retained.

Sensitivity analysis for missing‐data burden

To assess the robustness of our models with respect to the extent of
missing data subject to imputation, we stratified patients according
to their proportion of missing values (>50% vs. ≤50%) for both
the cytogenetics‐based and cytogenetics‐free models. In the
cytogenetics‐based model, 1.6% of training patients and 20.2% of
test patients had >50% missing data; C‐indexes were lower (OS: 0.60
vs. 0.66 in training; 0.63 vs. 0.66 in test; PFS: 0.57 vs. 0.62 in training;
0.58 vs. 0.61 in test), yet they continued to demonstrate discrimina-
tion. In the cytogenetics‐free model, the high‐missingness subgroup
comprised 0.9% of the training cohort and 0.1% of the test cohort;
discrimination declined (OS: C‐index 0.55 vs. 0.64 in training; PFS:
0.60 vs. 0.61) but remained prognostic, although the test subset was
small. Complete C‐index estimates with 95% CIs are provided in
Supporting Information S9: Table 1. These results indicate that, al-
though model performance attenuates as the degree of missingness
increases, substantial prognostic information is preserved.

Performance of the baseline risk stratification models

Both the cytogenetics‐based and cytogenetics‐free prognostic models
showed superior predictive performance for OS and PFS compared to
the ISS, R‐ISS, and R2‐ISS scores (Table 4, Supporting Information S4:
Figure 3, Supporting Information S5: Figure 4, and Supporting Informa-
tion S10: Table 2). The cytogenetics‐based model achieved higher
C‐indexes and time‐dependent AUCs for both end points, indicating
improved discriminative ability. Similarly, the cytogenetics‐free model also
outperformed traditional staging systems, maintaining strong predictive
accuracy even without cytogenetic variables. Importantly, both models
showed similar accuracy across transplant‐eligible and transplant‐
ineligible patient subsets, supporting their robustness and applicability

across clinical settings (Figure 4). Notably, all comparisons with conven-
tional scores were restricted to patients with complete data for the re-
spective scoring systems, thereby avoiding potential biases from
imputation and ensuring that the observed performance differences re-
flect genuine improvements in prognostic accuracy.

To further assess model reproducibility, we assessed their
performance in the VISTA19 and POLLUX20 trials, which included
patients with relapsed or refractory MM. Importantly, POLLUX
included participants treated with daratumumab‐based therapy,
providing an additional benchmark in a modern treatment context.
Both models maintained their prognostic accuracy despite differ-
ences in disease biology and prior treatment exposure, support-
ing their validity in this patient population (Table 5). Notably, in the
POLLUX cohort, both the cytogenetics‐based and cytogenetics‐
free models maintained strong discrimination in the DRd arm
(OS C‐index 0.653 [95% CI, 0.601–0.705] and 0.625 [95% CI,
0.570–0.680], respectively), whereas the Rd control arm showed
slightly higher C‐index values (OS C‐index 0.686 [95% CI,
0.640–0.732] and 0.675 [95% CI, 0.627–0.722]). Nevertheless,
predictive accuracy in the DRd arm remained robust for both OS
and PFS, underscoring the models' relevance in contemporary
daratumumab‐based therapeutic settings. These findings reinforce
the generalizability of the ML‐based risk stratification scores
across different disease stages and treatment regimens.

External validation in an unselected real‐world cohort of 2221
patients confirmed the models' performance in predicting OS: the
cytogenetics‐based model achieved a C‐index of 0.675 (95% CI,
0.659–0.690) and the cytogenetics‐free model achieved a C‐index of
0.673 (95% CI, 0.657–0.689), which were close to the values observed in
the clinical‐trial datasets, thereby supporting their external validity.

Variable importance in cytogenetics‐based and
cytogenetics‐free baseline models

In both the cytogenetics‐based and cytogenetics‐free models,
hemoglobin, age, and beta‐2 microglobulin emerged as the most

F IGURE 4 Time‐dependent area under the receiver‐operating‐characteristic curves (AUCs) evaluating the accuracy of the baseline cytogenetics‐based and

cytogenetics‐free models for overall survival (OS) and progression‐free survival (PFS) prediction in transplant‐eligible and transplant‐ineligible patients.
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influential predictors of OS and PFS, highlighting their fundamental
prognostic role in MM (Table 6, Figure 5). While the cytogenetics‐
based model incorporated 1q gain and 17p deletion, their relative
contribution to the model's discriminative ability was lower than
that of the primary clinical predictors. Notably, the absence of cy-
togenetic markers did not substantially alter the hierarchy of pre-
dictive variables, as hemoglobin, age, and beta‐2 microglobulin
remained the top contributors within the cytogenetics‐free model.
These findings underscore the robustness of clinical and biochemical
factors in MM prognostication, demonstrating their predictive
strength even in the absence of cytogenetic data.

Impact of incorporating upfront treatment on
prognostic accuracy

The impact of upfront treatment variables on PFS and OS prediction
was evaluated in the training set, given the complexity and response‐
adapted design of the Myeloma XI18 trial (Table 3). Among 5823 pa-
tients, treatment regimens were unambiguously categorized as IMiD‐
based (N = 3078), PI‐based (N = 1139), or PI‐IMiD‐based (N = 1606). In
the cytogenetics‐based model, the OOB C‐index improved modestly
from 0.660 (95% CI, 0.649–0.670) to 0.665 (95% CI, 0.655–0.675) for
OS prediction and from 0.608 (95% CI, 0.600–0.617) to 0.628 (95% CI,
0.619–0.636) for PFS prediction with the addition of treatment data
(Supporting Information S6: Figure 5). Similarly, in the cytogenetics‐
free model, incorporating treatment variables marginally increased the
OOB C‐index from 0.642 (95% CI, 0.631–0.652) to 0.646 (95% CI,
0.636–0.657) for OS, and from 0.593 (95% CI, 0.584–0.602) to 0.611
(95% CI, 0.602–0.620) for PFS. These findings suggest that while up-
front treatment contributes moderately to PFS prognostication, the
RSF models retain strong predictive accuracy using only baseline
clinical and cytogenetic variables, supporting their applicability even in
the absence of detailed treatment data.

Incorporating treatment response into dynamic risk
prediction models

Recalibrating risk predictions from the time of best treatment re-
sponse significantly improved prognostic accuracy in both OS andT
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TABLE 6 Variable‐importance analysis showing the contribution of each

predictor in the cytogenetics‐based and cytogenetics‐free baseline models.

Variable OS (%) PFS (%)

Cytogenetics‐based model

Age 29.02 24.84

Hemoglobin 20.52 18.31

Beta‐2 microglobulin 17.88 20.67

17p deletion 12.54 8.49

1q gain 10.51 16.35

Albumin 9.54 11.33

Cytogenetics‐free model

Age 31.27 30.55

Hemoglobin 21.36 21.57

Beta‐2 microglobulin 25.88 29.89

Albumin 21.49 17.99

Abbreviations: OS, overall survival; PFS, progression‐free survival.
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PFS (Table 3). Among 6518 patients with documented best response,
integrating these data into the cytogenetics‐based model increased
the C‐index from 0.654 to 0.698 (95% CI, 0.688–0.708) for OS and
from 0.604 to 0.702 (95% CI, 0.695–0.710) for PFS (Supporting In-
formation S7: Figure 6). Similar improvements were observed in the
cytogenetics‐free model, where the C‐index for OS increased from
0.636 (95% CI, 0.625–0.646) to 0.683 (95% CI, 0.673–0.693) and for
PFS from 0.591 (95% CI, 0.583–0.600) to 0.695 (95% CI,
0.687–0.702). These findings underscore the strong prognostic value
of integrating treatment response data derived from serological
parameters, revealing that dynamic risk modeling substantially im-
proves predictive accuracy, even in the absence of cytogenetic
information.

Deployment of the EMN‐HARMONY Myeloma Risk
Calculator

To evaluate the clinical utility of the calculator, all six ML‐based
models (baseline, treatment‐informed, and dynamic, each available in
cytogenetics‐based and cytogenetics‐free versions) were deployed
within an online platform (Figure 6, Supporting Information S8:
Figure 7). The platform allows users to enter patient‐specific para-
meters and obtain OS and PFS estimates under different treatment
scenarios. By incorporating both baseline risk factors and dynamic

response data, the tool provides nuanced, individualized prognostic
estimates. Examples of its application illustrated how treatment se-
lection and response to induction therapy can influence risk stratifi-
cation, offering valuable insights for clinical decision‐making.

DISCUSSION

In this study, we developed and validated a data‐driven, ML‐based risk
stratification strategy for MM, integrating cytogenetics‐based and
cytogenetics‐free models to improve prognostic accuracy for OS and
PFS. These models outperformed traditional risk scores (ISS,4 R‐ISS,6

and R2‐ISS8) by leveraging a broader array of clinical, biochemical, and
cytogenetic variables. Hemoglobin, beta‐2 microglobulin, albumin, and
age emerged as the most influential factors, in line with state‐of‐the‐art
literature,4,31–33 while cytogenetic markers such as 1q gain and 17p
deletion further enhanced risk prediction, consistent with previous
reports.8,34–36 Importantly, the models demonstrated consistent per-
formance across transplant‐eligible and transplant‐ineligible patients,
underscoring their versatility. Incorporating treatment‐related variables
provided additional prognostic refinement, particularly for PFS,
reinforcing the relevance of upfront therapy in risk assessment.
Moreover, the dynamic risk model, recalibrated at the time of best
response to first‐line therapy, significantly enhanced prognostication.
Unlike conventional staging systems, which rely solely on static

F IGURE 5 Variable‐importance analysis based on the permutation metric implemented in the vimp function of the randomForestSRC R package. Bars represent

the drop in out‐of‐bag prediction accuracy observed after permuting each predictor, thereby quantifying its relative contribution to model performance. Results are

shown for overall survival and progression‐free survival predictions generated by the cytogenetics‐based and cytogenetics‐free Random Survival Forest models.
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variables, this strategy incorporates baseline, treatment‐informed, and
dynamic models, offering a more adaptable and personalized approach
to risk stratification.9,11,37

Beyond NDMM, we also validated our baseline models in real‐
world cohorts and in relapsed or refractory MM patients, including
those treated in the VISTA and POLLUX trials.19,38 The models
maintained strong predictive accuracy in this population, even among
patients receiving daratumumab‐based regimens, highlighting their
applicability across different disease stages and treatment settings.
These findings underscore the generalizability of this ML‐driven risk
stratification strategy, supporting its integration into clinical work-
flows to support patient management, evidence‐based treatment
decisions, and clinical trial design in MM.

Recently, genomic signatures such as the IMS‐Barcelona classi-
fier39 and the IrMMa signature40 have shown additional prognostic
value in MM. Incorporating such genomic information into ML‐based
risk tools could further enhance predictive accuracy when those data
are available. However, a major advantage of the proposed strategy
lies in its capacity to provide accurate risk estimates without the need
for genomic sequencing or FISH, thereby enhancing its applicability in

resource‐limited settings and clinical environments with limited ac-
cess to advanced diagnostic technologies.

Another key advantage of this strategy lies in its implementation
as a web‐based risk calculator, serving as a digital biomarker that de-
livers real‐time, evidence‐based risk assessments to support clinical
decision‐making. Unlike static scoring systems, this complementary
interactive tool dynamically generates continuous risk estimates—
rather than assigning patients to rigid categories—based on patient‐
specific variables, including cytogenetic data and treatment response,
thereby adding a novel dimension to risk assessment. By integrating
ML‐derived risk scores into an intuitive platform, the calculator enables
granular, personalized risk evaluation that evolves with the patient's
disease course, offering actionable insights for treatment selection and
monitoring. Its online accessibility further broadens its utility, particu-
larly in resource‐limited settings where advanced diagnostics are often
unavailable. This approach bridges the gap between conventional ca-
tegorical systems and precision medicine, providing clinicians with both
familiar reference points and sophisticated, adaptive risk modeling.

This study benefits from the comprehensive and diverse dataset
provided by the EMN–HARMONY Consortium, integrating clinical

F IGURE 6 Example output of the risk score calculator for a patient with hemoglobin (Hb) 10 g/dL, beta‐2 microglobulin (B2‐mg) 3.0mg/dL, albumin 2.9mg/dL,

presence of 17p deletion, and absence of 1q gain. (A, B) The predicted risk distributions for immunomodulatory imide (IMiD)‐based therapy (A) and proteasome

inhibitor (PI)–IMiD combination therapy (B). For each regimen, the patient's Random Forest–derived risk score is converted into a percentile rank relative to the

corresponding distribution in the training cohort. Percentiles are displayed overall and stratified by transplant eligibility status in the training set (transplant candidate

vs. noncandidate), providing an intuitive frame of reference for clinicians. Lower percentiles indicate lower relative risk (e.g., for progression‐free survival), whereas

higher percentiles indicate higher relative risk. Because the metric is percentile‐based, it represents relative—not absolute—risk.
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trial and limited real‐world data from a large cohort of MM patients,
thereby enhancing the reliability and generalizability of our risk
stratification models. The use of ML enabled the integration of a
broad range of clinical, cytogenetic, and biochemical variables,
thereby improving predictive accuracy and model robustness. The
availability of both cytogenetics‐based and cytogenetics‐free models
further increases their applicability across different clinical settings.
This approach aligns with contemporary efforts to integrate digital
tools into clinical workflows, facilitating evidence‐based treatment
decisions and improving patient management in clinical settings
where cytogenetics or genomic data are unavailable.41 However, as
with any retrospective analysis, selection bias and missing data re-
main potential limitations. While the dataset is highly representative
of the MM population, external validation beyond clinical trial po-
pulations is a major concern,42–47 and additional validation in real‐
world clinical settings would further strengthen its applicability across
diverse patient groups. Future studies should focus on expanding the
validation of these models across broader cohorts, ensuring its con-
tinued evolution as a precise and adaptable risk stratification tool.

A key methodological consideration in this study is the man-
agement of missing data, which is inherent to large, multisource da-
tasets such as EMN–HARMONY. Although several variables had high
proportions of missingness, the absolute number of patients with
available values remained consistently high, exceeding 1000 real
cases for each variable. This allowed imputations to be based on
sufficiently large, representative subsets, thereby enhancing their
reliability. We used Random Forest–based imputation, a state‐of‐the‐
art technique capable of capturing nonlinear relationships and inter-
actions among variables without assuming parametric distributions.
Notably, in the final reduced model, the variable with the highest
missingness (hemoglobin) still had over 3200 complete observations.
Moreover, to prevent imputation from introducing bias in model
comparisons, all benchmarking against conventional prognostic
scores was restricted to patients with complete data for the re-
spective scoring systems. Importantly, even in the presence of partial
information, ML models can leverage meaningful patterns from ob-
served data—including informative missingness—without requiring
perfectly imputed variables.48 These safeguards ensure that the
predictive advantage of the ML‐based models reflects true signal
rather than artifacts arising from data handling.

Future research should further refine dynamic risk modeling by in-
corporating minimal residual disease (MRD)49–53 assessments at multiple
time points, further enhancing prognostic precision and adapting risk
prediction to disease evolution. Incorporation of genetic mutations,34,54

gene expression profiles,55,56 circulating plasma cell counts,57,58 and
extramedullary disease detected by PET‐CT59–61 could also strengthen
risk stratification by capturing deeper biological complexity. Additionally,
although the model has already been validated in anti‐CD38‐containing
regimens for relapsed/refractory disease, forthcoming first‐line datasets
will enable regimen‐specific recalibration for each emerging quadruplet
backbone (e.g., daratumumab‐VRd, isatuximab‐KRd), ensuring that
prognostic performance remains optimized as new frontline therapies
become standard of care.62,63

CONCLUSION

We have developed and validated an ML‐based risk stratification strategy
for NDMM that surpasses ISS, R‐ISS, and R2‐ISS in predictive accuracy.
Integrating a dynamic risk score based on treatment response further
improved prognostic precision. To facilitate clinical adoption, we
provide an interactive online calculator (https://taxonomy.harmony-
platform.eu/riskcalculator/) that delivers real‐time, individualized risk

assessments. Future prospective studies are warranted to validate its
integration into clinical practice and confirm its impact on patient
management.
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