Zhong, J. orcid.org/0000-0001-5325-3739, Davey, A., Frood, R. orcid.org/0000-0003-2681-9922 et al. (13 more authors) (2025) Combining MRI radiomics, hypoxia gene signature score and clinical variables for prediction of biochemical recurrence-free survival after radiotherapy in prostate cancer. La Radiologia Medica, 130. pp. 1139-1148. ISSN: 0033-8362
Abstract
Purpose To investigate the value of combining MRI radiomic and hypoxia-associated gene signature information with clinical data for predicting biochemical recurrence-free survival (BCRFS) after radiotherapy for prostate cancer.
Methods Patients with biopsy-proven prostate cancer, hypoxia-associated gene signature scores and pre-treatment MRI who received radiotherapy between 01/12/2007 and 31/08/2013 at two cancer centres were included in this retrospective cohort analysis. Prostate segmentation was performed on axial T2-weighted sequences using RayStation (v9.1). Histogram standardisation was applied prior to radiomic feature (RF) extraction. PyRadiomics (v3.0.1) was used to extract RFs for analysis. Four multivariable Cox proportional hazards BCRFS prediction models using clinical information alone and in combination with RFs and/or hypoxia scores were evaluated using concordance index (C-index) [confidence intervals (CI)]. Akaike Information Criterion (AIC) was used to assess model fit.
Results 178 patients were included. The clinical-only model performance C-index score was 0.69 [0.64–0.7]. The combined clinical-radiomics model (C-index 0.70[0.66–0.73]) and clinical-radiomics-hypoxia model (C-index 0.70[0.65–0.73]) both had higher model performance. The clinical-hypoxia model (C-index 0.68 [0.63–0.7) had lower model performance. Based on AIC, addition of RFs to clinical variables alone improved model performance (p = 0.027), whereas adding hypoxia gene signature scores did not (p = 0.625). The selected features of the combined clinical-radiomics model included age, ISUP grade, tumour stage, and wavelet-derived grey level co-occurrence matrix (GLCM) RFs.
Conclusion Adding pre-treatment prostate MRI-derived radiomic features to a clinical model improves accuracy of predicting BCRFS after prostate radiotherapy, however addition of hypoxia gene signatures does not improve model accuracy.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Prostate cancer, Magnetic resonance imaging, Radiomics, Hypoxia, Radiotherapy |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 05 Sep 2025 11:03 |
Last Modified: | 05 Sep 2025 11:03 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s11547-025-02037-4 |
Related URLs: | |
Sustainable Development Goals: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:231194 |