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Abstract
Purpose  To investigate the value of combining MRI radiomic and hypoxia-associated gene signature information with clini-
cal data for predicting biochemical recurrence-free survival (BCRFS) after radiotherapy for prostate cancer.
Methods  Patients with biopsy-proven prostate cancer, hypoxia-associated gene signature scores and pre-treatment MRI 
who received radiotherapy between 01/12/2007 and 31/08/2013 at two cancer centres were included in this retrospective 
cohort analysis. Prostate segmentation was performed on axial T2-weighted sequences using RayStation (v9.1). Histogram 
standardisation was applied prior to radiomic feature (RF) extraction. PyRadiomics (v3.0.1) was used to extract RFs for 
analysis. Four multivariable Cox proportional hazards BCRFS prediction models using clinical information alone and in 
combination with RFs and/or hypoxia scores were evaluated using concordance index (C-index) [confidence intervals (CI)]. 
Akaike Information Criterion (AIC) was used to assess model fit.
Results  178 patients were included. The clinical-only model performance C-index score was 0.69 [0.64–0.7]. The combined 
clinical-radiomics model (C-index 0.70[0.66–0.73]) and clinical-radiomics-hypoxia model (C-index 0.70[0.65–0.73]) both 
had higher model performance. The clinical-hypoxia model (C-index 0.68 [0.63–0.7) had lower model performance. Based 
on AIC, addition of RFs to clinical variables alone improved model performance (p = 0.027), whereas adding hypoxia gene 
signature scores did not (p = 0.625). The selected features of the combined clinical-radiomics model included age, ISUP 
grade, tumour stage, and wavelet-derived grey level co-occurrence matrix (GLCM) RFs.
Conclusion  Adding pre-treatment prostate MRI-derived radiomic features to a clinical model improves accuracy of predict-
ing BCRFS after prostate radiotherapy, however addition of hypoxia gene signatures does not improve model accuracy.
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Introduction

Prostate cancer is the commonest malignancy in men and a 
major cause of cancer-related death [1]. Radiation therapy 
(RT), including external beam radiation therapy (EBRT) 
and brachytherapy (BT), is an effective treatment for local-
ised prostate cancer [2]. Despite advances in diagnostic 
imaging and RT delivery techniques, 30–50% of men 
with high-risk disease experience biochemical recurrence 
(BCR) within 10 years of treatment, most commonly due 
to intraprostatic relapse [3, 4]. BCR is associated with 
worse outcomes in prostate cancer in terms of local recur-
rence, distant metastasis, and death [5]. Predicting the 
likelihood of progression of prostate cancer in individual 
patients could help oncologists personalise treatment plans 
and stratify intensity of follow-up appointments tailored 
to recurrence risk. This would allow earlier detection of 
disease progression or recurrence and facilitate timely 
interventions.

Currently, risk stratification in localised prostate can-
cer predominantly relies on pathological findings from 
biopsies and standard imaging evaluation to determine 
spread of disease. Using information on serum prostate 
specific antigen (PSA) level, tumour stage (T-stage) and 
Gleason grade allows stratification into three major groups 
(low-risk, intermediate-risk and high-risk) based on prob-
ability of biochemical recurrence after local therapy [6]. 
Early efforts to incorporate genomics into risk prediction 
tools have been promising, with Spratt et al. proposing 
a system integrating existing genomic and clinical infor-
mation to improve risk stratification [7]. Their combined 
clinical–genomic risk system better predicted metastasis 
than using the standard National Comprehensive Cancer 
Network (NCCN) risk group alone and reclassified 30% 
of patients.

Hypoxia, a state of low oxygen, is a common micro-
environmental feature in most solid tumours, which acti-
vates multiple biological processes such as glycolysis and 
angiogenesis, inducing the expression (mRNA abundance) 
of multiple genes involved in these pathways and changes 
in transcriptomic profiles [8]. High-throughput expression 
profiling technologies that can measure RNA expression 
have allowed the development of hypoxia-associated gene 
signatures, which were prognostic and associated with 
RT resistance and metastatic disease in prostate cancer 
cohorts [9–12].

Traditionally, measuring oxygen levels in tumours has 
been performed using needle electrodes, however this is 
invasive, technically demanding, and not representative 
of the whole prostate [13]. Magnetic resonance imaging 
(MRI) has an essential role in prostate cancer for diagnosis 
and treatment planning with the potential for monitoring 

after therapy to assess local recurrence [14]. When 
combined with radiomics, a quantitative image analysis 
technique used to derive imaging biomarkers [15], MRI-
based radiomic prognostic models have shown improved 
prediction of survival outcomes for multiple cancer types 
compared with clinical information alone [16–18]. Addi-
tionally, combining MR-imaging, which can detect char-
acteristics (phenotypes) associated with more aggressive 
prostate disease [19], with gene-based biomarkers shows 
promise in aiding prediction of clinical outcomes such as 
survival or treatment resistance [20, 21].

Recent work has demonstrated a potential association 
between radiomic features (RF) derived from MRI and 
pimonidazole-based hypoxia biomarkers, showing it may 
be feasible to develop a radiomics hypoxia model using 
T2-weighted (T2w) sequences [22]. There is limited evi-
dence on the utility of combining imaging and hypoxia-asso-
ciated genomic biomarkers for outcome prediction. To the 
best of our knowledge, only a single study (in cervical can-
cer) has evaluated integrated imaging and gene expression 
signatures for non-invasive assessment of hypoxia-related 
treatment resistance [21]. Identifying imaging “radiog-
enomic” (combined radiomic and genomic) hypoxia signa-
tures may potentially offer a non-invasive way to analyse the 
whole prostate and predict outcome.

The study aim was to investigate the value of combining 
prostate MRI radiomic and hypoxia-associated gene sig-
nature information with clinical data for the prediction of 
biochemical recurrence-free survival (BCRFS) in men with 
prostate cancer treated with radiotherapy.

Methods

Study design

Prostate cancer patients treated with primary radiotherapy 
between 01/12/2007 and 31/08/2013 at two UK NHS hos-
pitals were included in this retrospective cohort study. The 
study was approved by the United Kingdom North West 
Research Ethics Committee (IRAS 15/NW/0559). All 
patients also received androgen deprivation therapy.

Inclusion criteria were: (a) male patients with organ-con-
fined or locally advanced prostate cancer (with no detected 
nodal disease or distant metastatic), aged at least 18 years; 
(b) biopsy-confirmed high-risk prostate cancer; (c) primary 
radiotherapy to treat their prostate cancer ( EBRT ± BT); (d) 
available pre-treatment MRI; (e) available formalin-fixed, 
paraffin-embedded (FFPE) biopsy to enable Ragnum and 
West hypoxia gene signature evaluation; (f) available clini-
cal features (patient age, International Society of Urologi-
cal Pathology (ISUP) grade, PSA and T-stage) and clinical 
outcome data.
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Biochemical recurrence (BCR) after radiotherapy was 
defined by a PSA rise ≥ 2 ng/ml above the nadir.

Diagnostic MR images, patient and tumour characteristics 
(ISUP grade and T-stage), and hypoxia gene signature were 
collated for all patients. Adherence was made to the updated 
2024 Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) (Supplementary Material), a tool for assessing the 
quality of multivariate prediction models involving imaging 
and machine learning (ML) techniques [23].

MRI acquisition

All patients underwent prostate imaging on 1.5 T MRI scan-
ners which included a minimum of an axial T2w sequence 
encompassing the whole prostate. Imaging was performed 
using multiple different MRI scanners. Specific scanner 
acquisition parameters are listed in Supplementary Material.

Hypoxia‑associated gene signatures

Two different hypoxia gene signatures were used: a 32-gene 
signature based on pimonidazole staining (Ragnum) and a 
28-gene signature (West) based on hypoxia induced expres-
sion in prostate cancer cell lines. Both signatures were prog-
nostic for biochemical recurrence in several prostatectomy 
cohorts [11, 12]. For the cohorts studied here, signature 
scores were generated from gene expression data generated 

using Affymetrix GeneChip Clariom™ S microarrays after 
RNA extraction from archived pre-treatment tumour sam-
ples. Expression data passing quality control checks were 
normalised into an expression matrix [24]. The gene enrich-
ment analysis and construction of the gene signatures has 
also been previously described [12].

Methodological pipeline

A flowchart illustrating the methodological pipeline is 
shown in Fig. 1.

Image segmentation & histogram normalisation

The whole prostate gland and prostate tumour (if visible) 
were manually segmented by an experienced radiologist and 
confirmed by a specialist Uroradiologist. All segmentation 
was performed on axial T2w sequences using RayStation 
(v9.1). Exported DICOM images were converted to Neu-
roimaging Informatics Technology Initiative (NIfTI) files 
using Python (v. 3.0.1, dicom2nifti package) and exported 
into PyRadiomics (v3.0.1) for analysis [25]. Histogram 
standardisation normalisation of all MR-images was applied 
using the Nyúl method prior to RF extraction to render 
dynamic signal intensity ranges comparable [26].

Fig. 1   Flowchart showing study pipeline from image segmentation, 
image normalisation, radiomic feature extraction, image post-process-
ing, feature selection steps to model building integrating hypoxia and 

radiomic data with clinical data. COMBAT, combating batch effects 
when combining batches; MRMR, minimum redundancy maximum 
relevance
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Radiomic feature extraction

Eight RF classes were extracted from each segmented region 
of interest (ROI) using PyRadiomics (v3.0.1) (25). PyRa-
diomics deviates from the Image Biomarker Standardisa-
tion Initiative (IBSI) by default applying a fixed bin width 
from zero and not the minimum segmentation value, and the 
PyRadiomics kurtosis is not corrected, yielding a value three 
higher than the IBSI kurtosis however these parameters can 
be manually adjusted. Otherwise, PyRadiomics adheres to 
IBSI guidelines, which provide a comprehensive review of 
each step involved in radiomic analyses, including radiomics 
nomenclature and required calibration datasets [27]. All RFs 
extracted and filters applied are detailed in Supplementary 
Material Table 2.

Post‑processing

Different numbers of bins (8, 16, 32, 64, 128, 256) and iso-
tropic voxel sizes (1, 2, 3) were tested to assess the most 
robust quantisation/re-binning setting based on the combi-
nation of bin number and voxel size that yielded the larg-
est set of radiomic features. An intraclass correlation coef-
ficient (ICC) threshold of > 0.8 was also used to eliminate 
inter-correlated features. Bin number was favoured over the 
bin width given the arbitrary nature of MRI intensity units. 
COMBAT harmonisation (v0.2.10) was applied to extracted 
RFs to account for variation in scanner models, acquisition 
protocols and reconstruction settings which RFs are affected 
by [28, 29].

Feature selection

RF feature selection was focused on ability to predict bio-
chemical recurrence.

a.	 Unsupervised feature selection
	   For each RF, correlation with tumour volume was 

assessed with Spearman rank correlation coefficient (p) 
and features with a p-value > 0.5 were removed. RFs 
were assessed for redundancy (linear correlation to other 
RFs) using Pearson correlation coefficient. If the cor-
relation coefficient was 0.5 or higher between two RFs 
then they were deemed to be correlated and the feature 
in the correlated pair with the highest mean correlation 
to other RFs was removed.

b.	 Supervised feature selection
	   Following a previously published approach [30], 

supervised feature selection was performed using three 
different techniques for comparison. The methods imple-
mented selected features that: (1) were significantly 
associated with outcome (i.e. BCRFS) in a univari-
able Cox regression model (p < 0.05), (2) significantly 

improved a multivariable Cox regression model of clini-
cal variables in a likelihood-ratio (LR) test (p < 0.05), 
and (3) had a positive contribution based on minimum 
redundancy maximum relevance (MRMR) ranking [31].

Each feature selection method was implemented indepen-
dently over 200 samples created from 40 five-fold strati-
fied cross-validation (SCV) runs with event-matching for 
number of biochemical recurrences, meaning the data was 
partitioned into five sub-sets, four for training and one held 
for testing with the number of events balanced between the 
subsets. Training was repeated five times with each subset 
being held as the test set independently. The separation of 
the subsets was repeated 40 times, with overall 200 cases 
to test model performance on. In each cross-validation 
training run, selected features were combined with clinical 
variables (age, ISUP grade, PSA, T-stage, tumour volume 
and treatment) to form a clinical-radiomics multivariable 
Cox model. This model was then applied to the test data. 
Including the clinical variables for the other feature selec-
tion methods (univariable, MRMR) made the comparison to 
the multivariable feature selection technique fair. Harrell’s 
concordance index (C-index) was calculated for both train-
ing and test models with the median and 95% CI across SCV 
runs recorded. The feature selection technique was selected 
based on calculating performance ranking from the median 
C-index across all clinical-radiomic models for both training 
(Ctrain) and test (Ctest) data [32]. For the chosen technique, 
the selected features from each training run were recorded 
and ranked by occurrence. The top ranking features up to 
the median number of features selected across all runs were 
recorded.

Model building

Using the feature results from the chosen feature selection 
technique, four different multivariable Cox proportional haz-
ards models were constructed for comparison: 1) clinical 
only, 2) clinical + hypoxia, 3) clinical + radiomics, and 4) 
clinical + hypoxia + radiomics to demonstrate whether add-
ing hypoxia and radiomic data improved overall model per-
formance compared to clinical information alone, the gold 
standard used as per the radiomics quality score guidance 
[15]. The Akaike Information Criterion (AIC) was extracted, 
and an Analysis of Variance (ANOVA) test was used to com-
pare if there was a significant difference in regression model 
performance for each model 2) to 5), in comparison to model 
1) (clinical only model as baseline). AIC provides a math-
ematical method to evaluate how well a model fits the data 
it was generated from [33]. A smaller AIC value indicated a 
better goodness of fit for predicting outcomes.

For internal testing, the median and 95% CIs of the 
C-index for each model across 500 bootstrap resamples was 



1143La radiologia medica (2025) 130:1139–1148	

calculated. C-index was calculated and each of these boot-
strap models was fitted to the original data. For analysis, 
T-stage was grouped into T1/2 and T3 groups. Radiomic 
features were scaled to have a mean of zero, and a unit vari-
ance of one.

Statistical analysis was performed in R (v.4.0.2). Two-
tailed tests were used with statistical significance defined 
as p < 0.05.

Results

Clinical characteristics

A total of 178 patients with histologically confirmed prostate 
cancer were treated with either EBRT (74 Gy in 37 frac-
tions) (n = 143), or EBRT (37.5 Gy in 15 fractions) plus high 
dose rate (HDR) brachytherapy (BT) boost (single fraction 
15 Gy) (n = 35), between 01/12/2007 and 31/08/2013. All 
patients received androgen deprivation therapy (ADT).

The clinical and treatment characteristics for all patients 
are listed in Table 1. Complete clinical, hypoxia and radi-
omics data was available for all patients. Median follow-up 
was 84 months (range 3–140). BCR rate was 32% (n = 60). 
Median BCRFS was 74 months (range 2–132).

Radiomic feature selection

The combination of bin number 256 and voxel size one 
yielded the greatest number of robust radiomic features. 
A total of 1314 RFs were extracted, 1068 remained after 
volume correlation, and 55 remained after removals for 
redundancy. The median number of RFs selected was seven 
by MRMR, three in multivariable, and three in univariable. 
The univariable technique had the best model performance 
across training and test data with a test C-index of 0.61 com-
pared to multivariable (C-index 0.60) and MRMR model 
(C-index 0.59).

Figure 2 shows the frequency (%) that each feature was 
selected across all cross-validation runs (out of 200). The 
higher the frequency the more stable that feature is in the 
feature selection process.

Prediction model performance

When evaluated on the complete dataset, the median C-index 
and confidence intervals (CI) of all four prediction models 
are shown in Fig. 3.

Based on the C-index, the combined clinical-radiomics 
model (C-index 0.7[0.66–0.73]) and clinical-radiomics-
hypoxia model (C-index 0.70[0.65–0.73]) had the joint high-
est model performance. The clinical-only model (C-index 
of 0.69 [0.64–0.7]) and clinical-hypoxia model (C-index of 
0.68 [0.63–0.7) had lower model performance.

Each model and overall model fit based on AIC are pre-
sented in Table 2.

The combined clinical and radiomics model has the low-
est AIC (AIC = 478.71) and best model fit. When compar-
ing the combined model AICs to the clinical only model 
using an ANOVA test, the clinical and radiomics model 
was statistically significantly better (p = 0.027, (p = exp(-
ΔAIC/2)[34]). Including hypoxia information alone (clini-
cal + hypoxia model) did not improve model performance 
(p = 0.774).

Discussion

This study demonstrates the feasibility of combining pre-
treatment T2w MRI-derived radiomic features with standard 
clinical variables to help improve performance of predict-
ing BCRFS after prostate radiotherapy and ADT. While 
hypoxia-associated gene signatures have been shown to be 
prognostic in men treated primarily with surgery, they did 
not improve the model performance further in this bi-institu-
tional cohort. A strength of this study is the unique dataset of 
paired imaging and genomic data available from two centres.

The results of this study are supported by existing lit-
erature where the utility of MRI-based radiomic analysis 

Table 1   Demographics of the study cohort

PSA, prostate specific antigen; ISUP, international society of uro-
logical pathology; EBRT, external beam radiotherapy; HDR-BT, high 
dose rate brachytherapy
1 Statistics presented: n (%); Median (range)

Characteristic N = 1781

Age (years) 70 (52–80)
PSA (ng/mL) 20 (2–234)
ISUP
1 5 (2.8%)
2 66 (37%)
3 35 (20%)
4 16 (9.0%)
5 56 (31%)
T-stage
T1 4 (2.2%)
T2 34 (19%)
T3 139 (78%)
T4 1 (0.6%)
Tumour volume (ml) 5 (0–97)
Treatment
EBRT 143 (80%)
HDR + EBRT 35 (20%)
Ragnum-32 hypoxia score 0.30 (− 0.37–0.82)
West-28 hypoxia score 1.40 (− 2.05–3.65)
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in prostate cancer has been shown to be feasible in can-
cer diagnosis and the prediction of Gleason score [35–38]. 
More recently, prediction models using prostate MRI radi-
omics have been reported assessing risk of BCR after radio-
therapy. Gnep et al. demonstrated that T2w MRI-derived 
Haralick textural features, which quantify spatial relation-
ships between neighbouring voxels, were associated with 
BCR occurrence [39] (48). Few studies have investigated 
the role of MRI-derived radiomics in assessing progression-
free survival in prostate cancer, however an initial report 

of 191 patients combining radiomics and clinical data into 
a hybrid prediction model yielded excellent performance 
with AUCs of 0.926 and 0.917 in the training and internal 
testing groups, respectively, which shows promise as a non-
invasive diagnostic tool for risk stratification [16]. Two RFs 
selected across all the feature selection methods used in this 
study were GLSZM Large Area High Gray Level Empha-
sis and First Order Mean, which quantifies grey level zones 
(the number of connected voxels that share the same grey 
level intensity) in an image [25]. A recent study of 63 men 

Fig. 2   Bar chart showing the frequency (%) that each radiomic fea-
ture was selected across all cross-validation runs (out of 200) for each 
feature selection method. LHH, HHL, HLH, LLL, 3D wavelet radi-

omic features; GLRLM, grey level run length matrix; GLCM, grey 
level co-occurrence matrix; GLDM, grey level dependence matrix; 
GLSZM, grey level size zone matrix

Fig. 3   C-index and confidence interval (CI) of all 4 models, showing the joint best models were Clinical + Radiomics (0.7) and Clinical + Radi-
omics + Hypoxia (0.7)
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receiving carbon ion radiotherapy for prostate cancer found 
similar RFs relating to Grey Level Zones were able to both 
predict the tumour metabolomics, such as alteration in the 
methionine amplitude and BCR. The current study also sup-
ports the notion that whole prostate gland radiomic features 
can provide additional information to help predict BCR.

Imaging and genomic biomarkers have different strengths, 
there are a paucity of studies investigating how they relate 
to each other in prostate cancer and their impact on survival 
outcomes to understand how to fully exploit any synergistic 
potential, the rationale for the current study. In cervical can-
cer, a multimodal prediction model combining both imaging 
and gene expression signatures in 118 patients was studied 
to assess hypoxia-related treatment resistance, a combined 
model allowed better prediction of progression-free sur-
vival[21]. In our prostate cancer study the addition of two 
prostate specific hypoxia-associated gene signatures did not 
improve prediction of BCRFS however the proviso is that the 
current sample remains small, and hypoxia signatures were 
not prognostic despite other previous studies showing the 
signatures being prognostic for BCRFS in several external 
patient cohorts, albeit most being treated with prostatectomy 
[11, 12]. Imaging permits more holistic prostate assess-
ment compared to a biopsy-derived hypoxia gene signature 
limited to the sampled region/s which may not capture the 
overall spatial and temporal tumour heterogeneity [40]. One 

limitation of imaging however is the difficulty in identifying 
the dominant intraprostatic lesion (DIL), particularly after 
ADT, which would make delineating and extracting the radi-
omics from the DIL challenging [41]. Regional differences 
in hypoxia exist across the entire tumour volume, and this 
heterogeneity may limit the utility of gene signatures derived 
from limited parts of the tumour [42]. This may help explain 
why the addition of the hypoxia-associated gene signature 
did not improve performance of outcome prediction in this 
study. However, recent work testing the signatures in radio-
therapy cohorts reported a lack of prognostic significance 
in men treated with radiotherapy and ADT, and suggested 
that use of hormone therapy might have reduced the effect 
of hypoxia [43]. Therefore, the lack of benefit of adding 
hypoxia signature might also be due to their poor perfor-
mance in men receiving ADT with radiotherapy, which is 
highly relevant to this study cohort.

The tumour ISUP grade, derived from biopsy, was prog-
nostic of BCR as previously highlighted in the literature 
[44]. ISUP grades are categorical and a study by De Nunzio 
et al. found the rate of discrepancy between biopsy pathol-
ogy and the prostatectomy specimen to be low meaning the 
five tier ISUP system was highly specific (91%) for cor-
rectly defining the tumour aggressiveness however hypoxia 
gene signature scores are more prone to fluctuations caused 
by sample preparation and potential RNA degradation due 

Table 2   Selected features for each of the four models (clinical only, clinical with hypoxia, clinical with radiomics and combined clinical, 
hypoxia and radiomics) and overall model performance score (AIC Statistic)

The radiomic features are scaled to mean zero and unit variance
The significant variables (p < 0.05) are highlighted in bold
EBRT, external beam radiotherapy; HDR-BT, high dose-rate brachytherapy; HHL, HLH, LHH, LLL, 3D wavelet radiomic features; GLCM, 
grey level co-occurrence matrix; AIC, akaike information criterion

Clinical model Clinical + Hypoxia Clinical + Radiomics Clinical + Radiom-
ics + Hypoxia

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age (years) 0.95 (0.91–0.99) 0.012 0.95 (0.91–0.99) 0.01 0.96 (0.92–1) 0.037 0.95 (0.91–1) 0.029
PSA (ng/mL) 1.01 (1–1.01) 0.061 1.01 (1–1.01) 0.07 1.01 (1–1.01) 0.069 1.01 (1–1.01) 0.075
ISUP grade 1.33 (1.07–1.64) 0.008 1.32 (1.07–1.63) 0.01 1.32 (1.06–1.63) 0.011 1.3 (1.05–1.62) 0.017
T-stage (T1/2 vs T3) 2.88 (1.18–7.06) 0.021 2.9 (1.18–7.1) 0.02 3.24 (1.29–8.15) 0.013 3.2 (1.27–8.1) 0.014
Tumour volume (ml) 1 (0.98–1.03) 0.682 1.01 (0.98–1.03) 0.645 1 (0.98–1.03) 0.733 1 (0.98–1.03) 0.693
Treatment (EBRT vs HDR-BT) 1.55 (0.77–3.1) 0.22 1.51 (0.75–3.03) 0.247 1.31 (0.63–2.74) 0.466 1.29 (0.62–2.69) 0.491
Ragnum-32 hypoxia score NA NA 1.37 (0.37–5.04) 0.637 NA NA 1.45 (0.37–5.69) 0.597
West-28 hypoxia score NA NA 0.93 (0.7–1.23) 0.599 NA NA 0.93 (0.7–1.25) 0.644
Wavelet HHL first order 

median
NA NA NA NA 0.78 (0.56–1.09) 0.145 0.79 (0.56–1.11) 0.167

Wavelet LHL GLCM cluster 
shade

NA NA NA NA 1.38 (1.08–1.76) 0.01 1.37 (1.07–1.75) 0.012

Wavelet LHH first order 
median

NA NA NA NA 0.81 (0.6–1.09) 0.173 0.8 (0.59–1.08) 0.141

AIC statistic 481.86 485.34 478.71 482.22
*Comparison to clinical model *P = 0.774 *P = 0.027 *P = 0.086
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to longer storage times [45, 46]. Based on this knowledge, 
studying two different hypoxia signatures was important 
in understanding the relationship and interaction between 
hypoxia scores and other clinical, biochemical and patho-
logical markers in a multivariate prediction model.

Imaging features could be linked to underlying biological 
changes and the potentially predictive prostate RFs observed 
in this study might be a surrogate for tumour aggressive-
ness and hypoxia. Wavelet transformation of RFs further 
separates out the spatial and frequency distributions of low 
and high frequency signals within the region of interest to 
delineate such changes [47]. Differentiating these properties 
may improve the overall performance of the hybrid radi-
omic prediction model, as demonstrated by the current study 
where the best performing radiomic features were all wavelet 
ones. Recent work has reported associations between T2w 
MRI radiomic features of the whole prostate gland or index 
lesion and tumour hypoxia, demonstrating the feasibility of 
building a radiomics hypoxia model from anatomical MRI 
[22, 48]. A study of 15 patients found a correlation between 
bi-parametric prostate MRI radiomic features extracted 
in localised prostate cancer and differentially expressed 
hypoxia-related genes associated with unfavourable survival 
outcomes [49]. The potential link between the imaging and 
gene signatures requires further investigation in prostate can-
cer to find surrogate measures that could be used in prog-
nosticating patients.

There are a number of limitations to the study. Our study 
was retrospective with MRI data acquired from several scan-
ners across different institutions, which is why an image 
harmonisation method was applied to minimise bias. There 
is also a limitation in using gene signatures because they 
require expression profiling platforms to measure the relative 
mRNA abundance, which is affected by the biopsy sample 
preservation technique (e.g. fresh-frozen or FFPE), age of 
the FFPE blocks and by technical batch effects which may 
limit the reliability of generating hypoxia scores between dif-
ferent institution cohorts. Both signatures were derived using 
gene expression data generated from fresh frozen samples 
but were obtained using FFPE material in our study. Other 
limitations in generating hypoxia scores were minimised by 
carrying out RNA extractions and gene expression profiling 
at a single centre so the same methods and platforms were 
used on the cohorts. The use of two hypoxia signatures was 
also a strength of this study as they were generated using 
different approaches. The Ragnum signature was trained on 
pimondiazole staining and the West signature was derived by 
identifying genes first in vitro via RNA-sequencing of pros-
tate cancer cell lines and then in vivo via gene co-expression 
analysis.

Finally, the choice of outcome metric remains debate-
able as BCRFS was not a surrogate endpoint for overall 

survival in recurrent prostate cancer in the NRG Oncol-
ogy/RTOG 9601 phase III trial [50]. BCR may be due 
to local or systemic relapse, both of which hypoxia pre-
disposes to and hypoxia-associated gene signatures have 
been identified as independent risk factors for metastasis-
free survival in prostate cancer [51], therefore evaluating 
the prediction of other survival endpoints may be more 
widely accepted by the clinical oncology community. The 
challenge of using overall survival is however the loss of 
follow-up for many of the included patients due to them 
being followed up only within the primary care setting 
which was not traceable.

Only T2w imaging was used due to the historic nature 
of MRIs available in participants with matched genomic 
data. Studies in cervical cancer have found that a radi-
omic signature derived from diffusion-weighted imaging 
(DWI), a functional sequence with quantitative informa-
tion reflecting cellularity, outperformed a model using 
T2w MRI-derived RFs for predicting survival [17]. In 
prostate cancer, a combined DWI and T2w survival pre-
diction model outperformed models using only one of 
these sequences when predicting 3-year progression-free 
survival [16]. It is reasonable to assume DWI and appar-
ent diffusion coefficient (ADC) information would add to 
the prognostic information offered by the T2w sequence, 
which is mainly used for detailing anatomy, whereas DWI/
ADC measure underlying tumour cell density and water 
diffusion which can provide additional information on 
the cellular microenvironment and even hypoxia [42]. A 
previous study mapping whole-mount prostate pathol-
ogy specimens with MRI images was able to use machine 
learning to generate predictive maps of pathologic features 
and regions of high-grade tumours based on MRI alone, 
with ADC features being the most highly predictive [52]. 
This has direct implications for the radiation oncology. In 
theory, using a radiogenomics or hypoxia-driven biologi-
cal adapted radiotherapy treatment approach could facili-
tate more accurate delivery of focal radiation boosts to the 
‘hypoxic’ or most aggressive parts of a tumour, in order to 
improve oncological outcomes and avoid rectal and uri-
nary bladder toxicity in men treated with hypo-fraction-
ated external beam radiotherapy for localised cancers [53]. 
To strive towards this future, rigorous additional investiga-
tion is first required to see if links between genomic signa-
tures and imaging-based hypoxia signatures can be found. 
The role of hypoxia functional MRI sequences to generate 
radiology hypoxia maps and enable detection of hypoxic 
regions will be a good starting point as preliminary results 
show the correlation between hypoxia regions on imaging 
with pimonidazole-stained pathological specimens [42]. 
Future work will integrate other functional sequences 
such as DWI/ADC and dynamic contrast-enhanced 
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(DCE) imaging to the prediction model in establish if this 
improves performance.

Conclusion

Prediction of BCRFS after prostate radiotherapy using pre-
treatment prostate MRI-derived radiomic features is tech-
nically feasible and improved model performance when 
combined with clinical variables. Addition of hypoxia gene 
signature score did not improve predictive accuracy. Further 
multicentre testing to assess reproducibility of radiomics is 
required prior to clinical translation.
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