Chernobrovkina, Daryna and Grunewalder, Steffen (2025) Support Collapse of Deep Gaussian Processes with Polynomial Kernels for a Wide Regime of Hyperparameters. [Preprint]
Abstract
We analyze the prior that a Deep Gaussian Process with polynomial kernels induces. We observe that, even for relatively small depths, averaging effects occur within such a Deep Gaussian Process and that the prior can be analyzed and approximated effectively by means of the Berry-Esseen Theorem. One of the key findings of this analysis is that, in the absence of careful hyper-parameter tuning, the prior of a Deep Gaussian Process either collapses rapidly towards zero as the depth increases or places negligible mass on low norm functions. This aligns well with experimental findings and mirrors known results for convolution based Deep Gaussian Processes.
Metadata
Item Type: | Preprint |
---|---|
Authors/Creators: |
|
Keywords: | stat.ML,cs.LG |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Depositing User: | Pure (York) |
Date Deposited: | 18 Mar 2025 15:30 |
Last Modified: | 06 Apr 2025 21:45 |
Published Version: | https://doi.org/10.48550/arXiv.2503.12266 |
Status: | Published |
Identification Number: | 10.48550/arXiv.2503.12266 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:224572 |