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Abstract

We analyze the prior that a Deep Gaussian Process with polynomial kernels in-

duces. We observe that, even for relatively small depths, averaging effects occur within

such a Deep Gaussian Process and that the prior can be analyzed and approximated

effectively by means of the Berry-Esseen Theorem. One of the key findings of this

analysis is that, in the absence of careful hyper-parameter tuning, the prior of a Deep

Gaussian Process either collapses rapidly towards zero as the depth increases or places

negligible mass on low norm functions. This aligns well with experimental findings

and mirrors known results for convolution based Deep Gaussian Processes.

1 Introduction

Deep Gaussian processes (DGPs) have been introduced by [1] as a natural extension of

Gaussian processes (GPs) that has been inspired by deep neural networks. Like deep neu-

ral networks, DGPs have multiple layers and each layer corresponds to an individual GP. It

has recently been noted by [2] that traditional GPs attain for certain compositional regres-

sion problems a strictly slower rate of convergence than the minimax optimal rate. This

is demonstrated in [2] by showing that for a class of generalized additive models any GP

will be suboptimal, independently of the kernel function that is used. Generalized additive

models can be regarded as a simple form of a compositional model with two layers. In

contrast, [3] have shown that DGPs can attain for such problems the minimax optimal rate

of convergence (up to logarithmic factors) when the DGPs are carefully tuned. In fact, they

show that DGPs are able to attain optimal rates of convergence for many compositional

problems. Along similar lines, [4] show that for nonlinear inverse problems DGPs can at-

tain a rate of convergence that is polynomially faster than the rate that GPs with MatÂern

kernel functions can attain when the unknown parameter has a compositional structure.

One well known downside of DGPs is the difficulty of sampling from the posterior distri-

bution. [5] approach this problem by providing a particularly simple prior which facilitates
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posterior calculations while guaranteeing adaptivity in the context of regression to both the

smoothness of the unknown regression function and the compositional structure.

In this paper, we focus on the prior that a DGP places on a function space. We work

in the context of polynomial kernels and we study the behavior of the priors as the depth

of the DGP increases. We show that the prior is very sensitive to the hyperparameters

that are used for the individual GPs and that small deviations of the ‘correct regime’ of

hyperparameters would either lead to an extremely tight concentration at zero or would

result in prior measures that place negligible mass on functions of low norm. In earlier

work, [6] have observed in experiments that the prior of a DGP with Gaussian kernels

shows pathological behavior. They also analyzed the derivative of a DGP to get insight

into this pathological behavior, but did not provide an analysis of the behavior of the prior

itself. [7] provide a deeper analysis by phrasing a DGP as a Markov chain and studying

its ergodic behavior. In particular, [7, Thm 4] states that the output of a DGP becomes

constant (in a form of point-wise convergence) as the depth increases when a Gaussian

kernel is used and a condition on the parameters of the kernel is satisfied. They also study

a DGP where instead of a composition of GPs a convolution of GPs is used. This form of

a DGP differs from the DGPs that are commonly used in the literature [1, 6, 2, 3, 5], but

has the advantage that it is amenable to a convolution and Fourier theory based argument.

This allows the authors to get deep insights into this type of DGPs. They find that for a

convolutional DGP, Fourier coefficients associated with the DGP converge either to zero or

diverge (almost surely). Furthermore, the eigenvalues of a covariance operator associated

with the DGP control if the coefficients converge to zero or diverge [7, Thm 16].

One of the key research challenges in the area of DGPs is to gain deeper insight into

the behavior of standard DGPs. Such insight is crucial to make sense of the ‘contradictory’

observations in the literature: on the one hand, DGPs are often used successfully in practice

[1] and DGPs outperform GPs in a variety of statistical tasks in terms of rate of convergence

[3] while, on the other hand, there is the pathological behavior of DGPs that has been

observed in experiments and in convolutional DGPs [6, 7]. This research challenge is also

far from trivial since the convolutional structure allows for significant simplifications in the

analysis of [7], and it is unclear how to get tight control of the behavior of a DGP in its

absence.

In the context of polynomial kernels, we develop an alternative approach that does

not rely on convolutions and applies to standard DGPs. Our approach makes use of the

fact that for polynomial kernel functions the sample paths of GPs lie within the reproduc-

ing kernel Hilbert space associated to that kernel function. Combining this fact with a

Karhunen-Loève type decomposition of the GPs allows us to write the composition of GPs

as a product of normally distributed vectors. We study these products then with the help

of the Berry-Esseen Theorem. It is worth highlighting that earlier works focused on Law

of Large Numbers and Ergodic type results which provide neither rates of convergence

nor finite sample bounds. In contrast to that, the Berry-Esseen approach that we develop

provides both rates of convergence and finite sample bounds.

Our main result is Theorem 1, which provides a bound on the approximation of a DGP

gℓ ◦ . . . ◦ g1(x), where g1 has covariance k1(x, y) = (xy + c)d1 , c ≥ 0, and the gi’s have

covariance ki(x, y) = σ2
i (xy)

di , where σi > 0 and the di’s are non-zero integers. For such
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a process we find a normally distributed random variable Y and a random sign S such that

sup
x,t∈R

|Pr(gℓ ◦ . . . ◦ g1(x) ≤ t)− Pr(SeY (g1(x))
c1 ≤ t)| ≤ 0.56

( ℓ∑

i=2

σ2
i,log

)−3/2
ℓ∑

i=2

ρi,log,

where σ2
log, ρlog is the variance and absolute third moment of certain log-normal random

variables. The constant c1 is equal to d2 + . . . + dℓ and will generally be very large. It is

worth highlighting that we have here an approximation of a DGP that consists of a product

of a single GP, a random sign, and a log-normal random variable.

Another important result that can be derived from the theorem is that when σ2 = . . . =
σℓ =: σ, then the median of the DGP converges rapidly to zero in ℓ if σ < exp((γ +
log 2)/2), where γ is the Euler-Mascheroni constant, and diverges when σ > exp((γ +
log 2)/2). This is the same threshold that was found by [7] in the context of convolutional

DGPs.

The remainder of the paper is organized as follows: in Section 1.1 we provide key

definitions and results that we use throughout. In Section 2, we start with the simple case

of products of Gaussian random variables; the motivation for this is that the main averaging

effects that are at play are very transparent in this simple setting. Section 3 is our main

section. We start with the simple case of a product of GPs with linear kernels before

approaching the case of polynomial kernels. In Section 4 we provide then a discussion

of the results and we put these in perspective. In particular, we highlight challenges that

need to be overcome to extend our results beyond the polynomial kernel case. There are

also two appendices with technical results. In Appendix A we provide a variety of closed

form expressions for moments of log-normal random variables that we use throughout, and

Appendix B contains a variety of auxiliary results for DGPs that we use.

1.1 Preliminaries

A zero mean GP g on R is a stochastic process which is fully specified by its covariance

function k(x, y), x, y ∈ R. The covariance function k is positive semi-definite. The func-

tion k is called the covariance function since Var(g(x)) = k(x, x) and Cov(g(x)g(y)) =
k(x, y) for all x, y ∈ R. In the context of kernel methods, one also calls k the kernel

function and we use the two terms interchangeably. To each covariance function there cor-

responds a reproducing kernel Hilbert space (RKHS) Hk. In case that Hk is finite dimen-

sional it is known that the GP g attains values in Hk. In other words, the sample paths are

RKHS functions when Hk is finite dimensional. If Hk is infinite dimensional then the sam-

ple paths lie almost surely not in Hk. Often it is convenient to work with a so called feature

map ϕ : R → Hk which satisfies ⟨ϕ(x), ϕ(y)⟩ = k(x, y), where the inner product is here

the inner product of Hk. In the finite dimensional case, we also write ϕ(x)⊤ϕ(y) = k(x, y).
A DGP of depth ℓ on R is a composition of ℓ zero mean GPs gℓ◦ . . .◦g1 with corresponding

covariance functions kℓ, . . . , k1.
We make frequent use of the Central Limit Theorem (CLT) and different versions of

the Berry-Esseen Theorem. In particular, we use the following two versions of the Berry-

Esseen Theorem, which guarantee uniform convergence of certain normalized sums to a

Gaussian limit: (1) The first version that we use applies to zero mean i.i.d. random variables
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X1, . . . , Xn with variance Var(X1) = σ2 and absolute third moment ρ = E(|X1|3). Let

Sn = X1 + . . .+Xn then this version of the Berry-Esseen Theorem states that

sup
x∈R

|Pr(n−1/2σ−1Sn ≤ x)− Φ(x)| ≤ 0.336(ρ+ 0.415σ3)

σ3n1/2
,

where Φ denotes the cumulative distribution (CDF) function of a standard normal random

variable.

(2) The second version avoids the need of identically distributed random variables at

the cost of a slightly more conflated theorem statement. Consider again independent zero

mean random variables X1, . . . , Xn but now with individual variances Var(Xi) = σ2
i and

absolute third moments ρi = E(|Xi|3), i ≤ n. The second version of the Berry-Esseen

Theorem states that

sup
x∈R

|Pr
(

Sn
√

σ2
1 + . . .+ σ2

n

≤ x

)

− Φ(x)| ≤ 0.56
( n∑

i=1

σ2
i

)−3/2
n∑

i=1

ρi.

Note that the n−1/2 factors that appear in the first version are subsumed in the variance

terms; i.e. when σ1 = . . . = σn = σ then
√

σ2
1 + . . .+ σ2

n =
√
nσ and when additionally

ρ1 = . . . = ρn = ρ then (
∑n

i=1 σ
2
i )

−3/2
∑n

i=1 ρi = ρ/
√
nσ3.

Besides the definition of a DGP, all of the above results are classical and can be found

in textbooks such as [8].

2 Products of Gaussian Random Variables

We start by analyzing the products of Gaussian random variables before approaching DGPs

in the following section. We will see that such products are closely related to compositions

of GPs with linear kernels. Let X1, ..., Xℓ be i.i.d. standard random variables with variance

σ2 > 0 and consider their product
∏ℓ

i=1Xi. Figure 1 plots the density of the product

in dependence of ℓ. Notice that the left plot uses σ = 1 and that the density rapidly

concentrates around zero in this case, as ℓ increases. The right plot considers larger values

of σ (the values are 2, 2.5 and 3) and we can notice the opposite effect: the probability for

the absolute value of the product to attain values below 1/2 rapidly falls as ℓ increases. We

will observe this effect repeatedly in other contexts.

We will now aim to characterize the distribution of the product as ℓ increases. In order

to do that, we apply the CLT to the product. We write the product as

ℓ∏

i=1

Xi =

(
ℓ∏

i=1

Si

)(
ℓ∏

i=1

|Xi|
)

,

where Si is the sign of Xi,

Si =

{

1 if Xi ≥ 0,

−1 otherwise.

Note that Si is independent of |Xi| (Appendix A.2) and that
∏ℓ

i=1 Si attains values 1 and −1

each with probability 1/2. If we take the logarithm of
∏ℓ

i=1 |Xi| then the CLT is applicable

4



Pr(
∏ℓ

i=1 |Xi| ≤ 1/2)

(a) (b)

Figure 1: (a) The densities of the product of ℓ = 1, 10, 30 normally distributed random

variables with mean µ = 0 and variance σ2 = 1 are shown. (b) The probability of the

product attaining values around zero for larger σ is shown.

if the variance of log |Xi| is finite. The variance of log |Xi| is, in fact, finite (See (12) in the

Appendix) and the CLT can be applied. Under the assumption X1, . . . , Xℓ are i.i.d. we can

infer that

ℓ−1/2

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) d→ N(0,Var(log |X1|)),

where d denotes convergence in distribution. In particular, for large ℓ the sum ℓ−1/2
∑ℓ

i=1 log |Xi|
has approximately the distributionN(

√
ℓE(log |Xi|),Var(log |Xi|)). Furthermore, the con-

tinuous mapping theorem [9, Thm 2.3] can be applied since the exponential function is

continuous, and it follows that a normalized version of the product converges in distribu-

tion,

(
ℓ∏

i=1

|Xi|
exp(E(log |Xi|))

)1/
√
ℓ

= exp
( 1√

ℓ

ℓ∑

i=1

(log |Xi| − E(log |Xi|))
)

d→ eZ ,

where Z is normally distributed with mean zero and variance Var(log |X1|). For large

enough ℓ we then have the approximation,

ℓ∏

i=1

|Xi|1/
√
ℓ ≈ eZ+

√
ℓE(log |X1|) (in distribution).

In other words,
∏ℓ

i=1 |Xi|1/
√
ℓ is approximately log normally distributed with mean param-

eter
√
ℓE(log |Xi|) and variance parameter Var(log |Xi|). Figure 2 shows a comparison

of this approximation and the corresponding distribution of the scaled product (gained by

sampling).
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(a) (b)

Figure 2: (a) The probability of the scaled product and the log-normal approximation to

attain values above 1/2 are compared (σ = 1). The plot is complemented by an error

bound. (b) The same quantities are compared but on a logarithmic scale (the error bound is

omitted).

One might wonder if the normalizing factor ℓ−1/2 can be incorporated into the variance

of the Xi so that we can say something about the product
∏ℓ

i=1 X̃i of suitably normalized

Gaussian random variables X̃i. This does not work, however, since Var(log |Xi|) = π2/8
independently of the variance parameter σ > 0. This is a consequence of Var(log |aXi|) =
Var(log |a|+ log |Xi|) = Var(log |Xi|), which holds for any a ∈ R.

2.1 An Application of the Berry-Esseen Theorem

Ideally, we want to be able to infer properties of
∏ℓ

i=1Xi or of
∏ℓ

i=1X
α
i , α ∈ N. This

will ultimately be useful for understanding how products of Gaussian processes with poly-

nomial kernels behave. When following the earlier approach, we are led to expressions of

the form
∑ℓ

i=1 log |Xi| and α
∑ℓ

i=1 log |Xi|. The leading α term in the latter expression

is of minor importance. However, the lack of the normalizing factor ℓ−1/2 in front of the

sums is a significant problem, since we cannot apply the CLT directly. This problem can

be understood in terms of point-wise convergence. The CLT tells us that for any x ∈ R,

limℓ→∞ Pr(ℓ−1/2
∑ℓ

i=1(log |Xi| − E(log |Xi|)) ≤ x) = Φ(x/σlog), where Φ denotes the

CDF of a standard normal random variable and σ2
log = Var(log |X1|) = π2/8. To control

the difference between the CDF of the unnormalized sum and Φ we can try

Pr
( 1

σlog

ℓ∑

i=1

(log |Xi|−E(log |Xi|)) ≤ x
)

= Pr
(ℓ−1/2

σlog

ℓ∑

i=1

(log |Xi|−E(log |Xi|)) ≤ ℓ−1/2x
)

and hope that the latter expression gets close to Φ(ℓ−1/2x). However, the CLT does not

allow us to infer this convergence since the location ℓ−1/2x changes with ℓ.
One way to address this nettle is to move from point-wise convergence to uniform

convergence. This can be achieved by using the Berry-Esseen Theorem instead of the CLT.

6



The Berry-Esseen Theorem guarantees that

sup
x∈R

|Pr
(

ℓ−1/2σ−1
log

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) ≤ x
)

− Φ(x)| ≤
0.336(ρσlog + 0.415σ3

log)√
ℓσ3

log

,

where we assume that our Gaussian variables X1, . . . , Xℓ are i.i.d., centered, and have

variance σ2
log and where we use the definition ρσlog = E(| log3 |Xi||). We provide a closed-

form expression of ρσlog in Appendix A , (13), as well as an easier to interpret bound (14).

It is also easy to get very accurate approximations of ρσlog through sampling. We can now

infer that, uniformly in x ∈ R,

|Pr
(

σ−1
log

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) ≤ x
)

− Φ(ℓ−1/2x)|

= |Pr
(

ℓ−1/2σ−1
log

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) ≤ ℓ−1/2x
)

− Φ(ℓ−1/2x)|

≤ sup
y∈R

|Pr
(

ℓ−1/2σ−1
log

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) ≤ y
)

− Φ(y)|

≤
0.336(ρσlog + 0.415σ3

log)√
ℓσ3

log

.

We can rewrite this further to get an approximation of the law of
∑ℓ

i=1 log |Xi|,

Pr
( ℓ∑

i=1

log |Xi| ≤ σlogx+ ℓE(log |X1|)
)

= Pr
(

σ−1
log

ℓ∑

i=1

(log |Xi| − E(log |Xi|)) ≤ x
)

≈ Φ(ℓ−1/2x).

In other words, with y = σlogx+ ℓE(log |X1|),

Pr
( ℓ∑

i=1

log |Xi| ≤ y
)

≈ Φ(ℓ−1/2σ−1
log(y − ℓE(log |X1|))). (1)

If we let Z ∼ N(ℓE(log |X1|), ℓσ2
log) then (1) implies

sup
x∈R

|Pr
( ℓ∑

i=1

log |Xi| ≤ x
)

− Pr(Z ≤ x)| ≤
0.336(ρσlog + 0.415σ3

log)√
ℓσ3

log

.

Since Pr(Z ≤ x) = Pr(eZ ≤ ex), and similarly for
∑ℓ

i=1 log |Xi|, we find that

sup
x∈R

|Pr
( ℓ∏

i=1

|Xi| ≤ x
)

− Pr(eZ ≤ x)| = sup
x∈R

|Pr
( ℓ∏

i=1

|Xi| ≤ ex
)

− Pr(eZ ≤ ex)|

≤
0.336(ρσlog + 0.415σ3

log)√
ℓσ3

log

. (2)
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Pr(
∏ℓ

i=1 |Xi| > 1/2)

(a) (b)

Figure 3: (a) The distribution of the product of ℓ = 1, 10 and 30 log-normal random vari-

ables with σ = 3 is shown. (b) The probability for the product and the log-normal approx-

imation to attain values above 1/2 is shown (σ = 3).

The median of the log-normal random variable eZ is approximately exp(ℓ(log(σ)− 0.63)).
In particular, when σ < e0.63 ≈ 1.87, the median approaches exponentially fast 0, while

when σ > e0.63, the median diverges to infinity at an exponential rate in ℓ. We demonstrate

this divergence effect in Figure 3 for
∏ℓ

i=1Xi and the approximation SZe
Z , where SZ is

a random variable that is independent of Z, and which attains values +1 and −1 with

probability 1/2 each.

2.2 Convergence & Approximation for Powers of X

We aim to generalize the above approach to products of the form
∏ℓ

i=1X
α
i . When α is

even then this product will always be positive and will be equal to
∏ℓ

i=1 |Xi|α. When α is

odd then
∏ℓ

i=1Xi = Sα

∏ℓ
i=1 |Xi|, where Sα attains values +1 and −1 with equal proba-

bility. We will apply again the the Berry-Esseen Theorem to approximate the distribution

of
∏ℓ

i=1 |Xi|α. To this end, note that

sup
x∈R

|Pr
(

ℓ−1/2(ασlog)
−1

ℓ∑

i=1

(α log |Xi| − αE(log |Xi|)) ≤ x
)

− Φ(x)|

≤
0.336(α3ρσlog + 0.415(ασlog)

3)

(ασlog)3
√
ℓ

,
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where the α’s on the right side cancel. As in the previous section, after introducing the

random variable Zα ∼ N(ℓαE(log |X1|), ℓ(ασlog)2), we can infer that

sup
x∈R

|Pr
( ℓ∏

i=1

|Xi|α ≤ x
)

− Pr(eZα ≤ x)| = sup
x∈R

|Pr
( ℓ∏

i=1

|Xi|α ≤ ex
)

− Pr(eZα ≤ ex)|

≤
0.336(ρσlog + 0.415σ3

log)

σ3
log

√
ℓ

.

Note that α plays a similar role as ℓ and the distribution of Zα for, say, α = 5 and ℓ = 10 has

the same mean as the random variable Z1 with ℓ = 50. This implies that larger values of α
lead to a more rapid collapse of the support of eZα . For example, the median of the variable

eZα is ℓα(log(σ)− 0.63). As the factor α increases, we have an even faster convergence of

the median to 0 for σ < 1.87 and divergence to infinity when σ > 1.88.

(a) (b)

Figure 4: (a) Five draws from a DGP with ℓ = 30 layers, a linear kernel, and σ = 1 is

shown. Notice the scale of the y-axis. (b) As for (a) but with σ = 2.5.

3 Limit Distributions of Deep Gaussian Processes

The results in the last section on the distribution of
∏ℓ

i=1Xi, where Xi are normally dis-

tributed, have natural links to the distribution of deep GPs. To see this, let us start with

the simple case where the kernel functions of the different layers are all k(x, y) = σ2xy
and x, y ∈ R. Now, consider ℓ independent Gaussian processes g1, . . . , gℓ each of which

has zero mean and kernel function k. The process gℓ ◦ . . . ◦ g1 is a Deep GP on R. The

kernel k(x, y) can also be written as an inner product of a feature map ϕ. In particu-

lar, if we use ϕ(x) = σx then k(x, y) = ϕ(x)ϕ(y). Each of the individual GPs attains

values in the RKHS Hk that corresponds to k. Note that this RKHS can be written as

{h : R → R : h(x) = αϕ(y)ϕ(x), α, y ∈ R} = {h : R → R : h(x) = αϕ(1)ϕ(x), y ∈ R}
since ϕ is linear in this context. Since ϕ(1) = σ we know that each path drawn from

9



the GP will be of the form ασϕ(x), where the slope α changes depending on our draw

from the GP. Let us use the notation α
(i)
ω to denote the slope corresponding to the draw

from GP gi for experiment ω ∈ Ω, i.e. α
(i)
ω is the random variable that corresponds to

the slope of the paths drawn from gi. Let us now take a look at g1 and α
(1)
ω . Fixing

some x ∈ R, we know that g1(x) is a zero mean Gaussian random variable with variance

k(x, x) = σ2x2. We also know that g1(x) = α
(1)
ω σϕ(x) = α

(1)
ω σ2x and α

(1)
ω = g1(x)/σ

2x.

In other words, α
(1)
ω is a Gaussian random variable with zero mean and variance 1/σ2.

Hence, with U1 = σ2α
(1)
ω ∼ N(0, σ2) it follows that g1(x) = α

(1)
ω σϕ(x) = U1x. By

induction we can generalize this to

gℓ ◦ . . . ◦ g1(x) =
ℓ∏

i=1

Uix,

where U1, . . . , Uℓ are i.i.d. with distribution N(0, σ2). The independence of U1, . . . , Uℓ

follows right away from the independence of g1, . . . , gℓ since each Ui is a function of gi.

3.1 Approximation of DGPs with Linear Kernels

From the previous section, we know that gℓ ◦ . . . ◦ g1(x) can be written as xS
∏ℓ

i=1 |Ui|,
where S is independent of the Ui’s and attains values +1 and −1 with equal probabil-

ity. The statement about S follows by the same argument as in Section 2. We can now

approximate the distribution of the product by means of the Berry-Esseen Theorem. In

particular, for large ℓ the product
∏ℓ

i=1 |Ui| will be close in distribution to eZ , where

Z ∼ N(ℓE(log |U1|), ℓσ2
log), with σ2

log = Var(log |U1|) and ρσlog = E(| log |U1||3). In par-

ticular, by following the same argument as in Section 2, and by incorporating the random

signs and x, we find that

sup
x,c∈R

∣
∣
∣Pr
(

gℓ ◦ . . . g1(x) ≤ c
)

− Pr(SxeZ ≤ c)
∣
∣
∣ = sup

x,c∈R

∣
∣
∣Pr
(

Sx

ℓ∏

i=1

|Ui| ≤ c
)

− Pr(SxeZ ≤ c)
∣
∣
∣

≤
0.336(ρσlog + 0.415σ3

log)√
ℓσ3

log

.

It is worth highlighting that this bound holds uniformly over all values x. In fact, in the

linear case, this follows right away since the Berry-Esseen bound is uniform in c and we

can use a simple substitution from c/x to c to infer that the bound also holds uniformly in

x.

3.2 Approximation of DGPs with Polynomial Kernels

We will now extend the above results to DGPs of the form gℓ ◦ . . . ◦ g1, where the GP g1
has a polynomial kernel of order d1, that is k1(x, y) = (xy + c)d1 , where d1 > 0 is some

integer and c ≥ 0, and the successive GPs have kernels ki(x, y) = σ2
i (xy)

di , di ≥ 1, σi > 0

10



and i ≥ 2. The GP g1 can be written in the following way (see Appendix B.1 on p. 25),

g1(x) =
d+1∑

i=1

Ziϕi(x) =
d∑

i=0

(
d

i

)1/2

Zi+1x
d−ici/2,

where (Z1, . . . , Zd+1)
⊤ ∼ N(0, I) and ϕi(x) =

(
d

i−1

)1/2
xd−i+1c(i−1)/2, i ≤ d+1. Similarly,

there are independent random variables Yi ∼ N(0, σ2
i ), which are also independent of

Z1, . . . , Zd+1, and such that gi(x) = Yix
di , for all 2 ≤ i ≤ ℓ. We can therefore write the

DGP as

gℓ ◦ · · · ◦ g1(x) = Yℓ(Yℓ−1)
d↓
1(Yℓ−2)

d↓
2 × · · · × (Y2)

d↓
ℓ−2

(d+1∑

i=1

Ziϕi(x)
)d↓

ℓ−1

,

where we use the notation d↓i =
∑i−1

j=0 dℓ−j , for i = 1, . . . ℓ−1. Taking the logarithm of the

product of the absolute values of the Y -terms gives us d↓ℓ−2 log |Y2|+ · · ·+ d↓1 log |Yℓ−1|+
log |Yℓ| =

∑ℓ
j=2 cj log |Yj|, where cj = d↓ℓ−j for j = 2, . . . ℓ − 1, and cℓ = 1. We are now

in a position to apply the Berry-Esseen Theorem for non-identically distributed random

variables. To set this up, let σ2
i,log = c2i Var(log |Yi|) and ρi,log = c3iE(| log |Yi||3) for

2 ≤ i ≤ ℓ. Then

sup
x∈R

|Pr((σ2
2,log + · · ·+ σ2

ℓ,log)
−1/2

ℓ∑

j=2

(cj log |Yj| − cjE(log |Yj|)) ≤ x)− Φ(x)|

≤ 0.56
( n∑

i=1

σ2
i,log

)−3/2
n∑

i=1

ρi,log. (3)

As earlier, we can translate this statement into a statement about
∑ℓ

j=2 cj log |Yj| by means

of substitution. For a given x, let y = (σ2
2,log + · · ·+ σ2

ℓ,log)
1/2x+

∑ℓ
j=2 cjE(log |Yj|), then

|Pr
( ℓ∑

j=2

cj log |Yj| ≤ y
)

− Φ
(

(σ2
2,log + · · ·+ σ2

ℓ,log)
−1/2

(
y −

ℓ∑

j=2

cjE(log |Yj|)
))

|

is also upper bounded by the right side of (3). In fact, this bound holds uniformly over all

y ∈ R. Let us introduce a random variable Y that is independent ofZ1, . . . , Zd+1, S2, . . . , Sℓ

and which has the law N(
∑ℓ

i=2 ciE(log |Yi|),
∑ℓ

i=2 σ
2
i,log), then

sup
y∈R

|Pr
(

|Yℓ|
ℓ−1∏

i=2

|Yi|ci ≤ y
)

− Pr(eY ≤ y)| = sup
y∈R

|Pr
( ℓ∑

j=2

cj log |Yj| ≤ y
)

− Pr(Y ≤ y)|

and the latter term is again upper bounded by the right side of (3). We can translate this into

a statement about the product of the Yi’s by observing that Yℓ
∏ℓ−1

i=2 Y
ci
i = Sℓ

∏

i∈I Si|Yℓ|
∏ℓ−1

i=2 |Yi|ci ,
where I ⊂ {2, . . . , ℓ} are the indices which correspond to odd ci values and Si is the sign

of Yi for all i ≤ ℓ. Since the different Si’s are independent of each other and independent

of the |Yi|’s it follows that S = Sℓ

∏

i∈I Si is a random variable that is independent of the

11



|Yi|’s (in fact, S is also independent of Z1, . . . , Zd+1) and it attains values +1 and −1 with

equal probability. There is one final technical hurdle in the way to an approximation of the

DGP. We need to multiply both the product and the approximation by the random variable

(g1(x))
c1 (strictly speaking, we can have two different probability spaces and the new space

needs to contain a copy of (g1(x))
c1). In any case, we can relate the two distributions that

include (g1(x))
c1 by means of a conditional expectation argument, which we provide in

Appendix B.3. From here we get directly to an approximation of the DGP. We summarize

this statement in the following theorem.

Theorem 1. Given a DGP gℓ ◦ . . . ◦ g1 on R with ℓ-layers and corresponding inde-

pendent GPs g1, . . . , gℓ with covariance functions k1(x, y) = (xy + c)d1 , c ≥ 0, and

ki(x, y) = σ2
i (xy)

di where σi > 0, 2 ≤ i ≤ ℓ, and d1, . . . , dℓ ≥ 1 are integers. There exist

independent Y2, . . . , Yℓ, such that each Yi has distribution N(0, σ2
i ) and gi(x) = Yix

di . For

2 ≤ i ≤ ℓ, let σ2
i,log = c2i Var(log |Yi|) and ρi,log = c3iE(| log |Yi||3). We have the following

approximation of the DGP:

sup
x,t∈R

|Pr(gℓ ◦ . . . ◦ g1(x) ≤ t)− Pr(SeY (g1(x))
c1 ≤ t)| ≤ 0.56

( ℓ∑

i=2

σ2
i,log

)−3/2
ℓ∑

i=2

ρi,log,

where

Y ∼ N
( ℓ∑

i=2

ciE(log |Yi|),
ℓ∑

i=2

c2i Var(log |Yi|)
)

,

and cℓ = 1, ci =
∑ℓ

j=i+1 dj , for 1 ≤ i ≤ ℓ− 1. The random sign S attains values +1 and

−1 with equal probability. Furthermore, g1, S and Y are independent and we can write

g1(x) =

d1∑

i=0

(
d1
i

)1/2

Zi+1x
d1−ici/2,

with Z1, . . . , Zn independent standard normal random variables that are independent of S
and Y .

Example (d2 = . . . = dℓ = 2): It is instructive to analyze the distribution of S(g1(x))
c1eY

and the Berry-Esseen bound in a concrete setting. Assume that d2 = . . . = dℓ = 2 and

σ2 = . . . = σℓ = σ, for some σ that we will vary, and let ℓ ≥ 2. We show in Appendix B.2

(Eq. (15)) that the Berry Esseen bound takes in this setting the form

0.56
( ℓ∑

i=2

σ2
i,log

)−3/2
ℓ∑

i=2

ρi,log ≤ 3ℓ−1/2 E(| log |Y1||3)
(Var(log |Y1|))3/2

.

Note that the bound improves with the familiar ℓ−1/2 rate. In terms of the dependence on

σ, recall that Var(log |Y1|) is independent of σ and the bound in Appendix A.1 on p. 22

shows that the dependence of E(| log |Y1||3) on σ is at most logarithmical.

12



In terms of the distribution of Y , first note that for 2 ≤ i ≤ ℓ−1 the coefficients become

ci = 2(ℓ− i− 1) and the mean of Y becomes (App. B.2, Eq. (16)),

E(
ℓ∑

i=2

ciE(log |Yi|)) = (ℓ(ℓ− 1)− 1)E(log |Yi|)) ≈ ((ℓ− 1)2 + ℓ)(log(σ)− 0.63).

Similarly, the variance becomes (App B.2, Eq. (17))

ℓ∑

i=2

c2i Var(log |Yi|) =
(2ℓ(ℓ− 1)(2ℓ− 1)

3
−3
)

Var(log |Y1|) =
π2

8

(2ℓ(ℓ− 1)(2ℓ− 1)

3
−3
)

.

In terms of the log-normal random variable eY we have a similar effect as in the earlier

settings: the median of eY is exp((1/2)((ℓ − 1)2 + ℓ)(log(σ) − (γ + log 2)/2)) which

approaches rapidly zero when σ < exp((γ + log 2)/2) ≈ 1.88 and, otherwise, diverges to

infinity as ℓ increases. In terms of the approximation SeY (g1(x))
c1 of the DGP, note that

c1 = 2(ℓ− 1) and

(g1(x))
c1 =

( d1∑

i=0

(
d1
i

)1/2

Zi+1x
d1−ici/2

)2(ℓ−1)

.

Hence, we have two terms of large order that interact multiplicatively. If σ < 1.88 and

the sum
∑d1

i=0

(
d1
i

)1/2
Zi+1x

d1−ici/2 is strictly smaller than one then we expect the DGP to

attain tiny values. Similarly, when σ > 1.88 and the sum attains value above one then we

expect the DGP to attain huge values. The most interesting case is the case where the two

multiplicative terms compete: for simplicity consider the median value of eY , let σ = 1,

and assume that the sum attains a value of a > 1, then the product of these two terms is

approximately of the order e−ℓ2 × a2ℓ and the term eY will dominate when ℓ growth. The

probability for attaining large values depends obviously on x; the larger |x| the higher the

probability to observe large values a and the longer it will take for e−ℓ2 to dominate.

4 Discussion

In this paper, we demonstrated that, for a range of polynomial kernels, a DGP will either

concentrate around zero or it will generate functions that have increasingly large norms.

The regime where these two pathologies do not occur becomes increasingly smaller as the

size of the DGP increases. One can also note that kernels with higher order polynomials

will likely give rise to DGPs that show this pathological behavior earlier (we discuss this

phenomenon in the context of products of normally distributed random variables in Sec-

tion 2.2). Another important observation is that these effects arise due to averaging effects

across the layers. One can break these averaging effects in the context of polynomial ker-

nels by choosing the degree of some kernels significantly higher than of others. Then only

a few GPs will dominate. This, however, will be similar to a DGP with fewer layers, which

defeats the purpose of DGPs.

There is a wide range of open questions, that are important to address. One of the most

important questions is how to generalize our approach to a larger class of kernel functions.
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A major hurdle that needs to be overcome to be able to generalize the results is that GPs

with infinite dimensional RKHSs do not attain values within their RKHS. In all likelihood,

the fact that the RKHS lies dense in the space of functions in which the GP attains values

will be crucial for extensions. Another important question is why DGPs show near optimal

asymptotic rates of convergence in various problems given their pathological behavior. Is

this simply the Bernstein-von-Mises Theorem at work, or is there a deeper reason?
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A Closed-Form Solutions & Bounds

A.1 Closed form expressions for E(log |X|), E(log2 |X|), Var(log |X|)
and E(| log3 |X||)

It is known that the values E(log |X|) and E(log2 |X|) can be derived analytically when X
is normally distributed. With some more work one can also derive a closed-form expression

for E(| log3 |X||) whenever the variance σ2 of X satisfies σ2 > 1/2. We complement this

last result with the simple bound E(| log3 |X||) ≤ (E(log4 |X|))3/4 for the case where

σ2 ≤ 1/2. For the reader’s convenience, we present the various derivations in detail below.

Applications of the Γ function and the incomplete Γ functions. The first step is to de-

rive closed-form expressions for
∫∞
0
e−x2

log |x| dx,
∫∞
0
e−x2

log2 |x| dx and
∫∞
0
e−x2 | log3 |x|| dx.

An easy argument to derive these uses the Γ function

Γ(s) =

∫ ∞

0

xs−1e−x dx, (4)

as well as the upper incomplete Γ function

Γ(s, x) =

∫ ∞

x

ts−1e−t dt,

and the lower incomplete Γ function

γ(s, x) =

∫ x

0

ts−1e−t dt,

where for us it suffices to consider real valued s > 0, and where x > 0.

Taking derivatives on both sides of (4), where we can exchange the derivative and the

integral since the integral is defined for all s > 0, the derivative with respect to s exists

in a neighborhood around s = 1/2, and there exists an integrable function that bounds the

absolute value of the derivative from above ([10], Th.123D). Moreover, using the di-gamma

function ψ, which has the property that ψ(s) = Γ′(s)/Γ(s), for all s > 0, gives

Γ(s)ψ(s) =

∫ ∞

0

xs−1e−x log(x) dx.

In particular, for s = 1/2,

Γ(1/2)ψ(1/2) =

∫ ∞

0

x−1/2e−x log(x) dx = 2

∫ ∞

0

e−x2

log(x2) dx = 4

∫ ∞

0

e−x2

log(x) dx

and ∫ ∞

0

e−x2

log(x) dx =
Γ(1/2)ψ(1/2)

4
= −

√
π(γ + 2 log 2)

4
=

Γ′(1/2)

4
. (5)
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Similarly, we can approach the integral for log2 |x|. Analogously to the calculation above,

we can exchange the derivative and the integral by ([10], Th.123D). Taking the second

derivative of the Γ function, yields

d

ds
Γ(s)ψ(s) =

∫ ∞

0

xs−1e−x log2(x) dx.

On the left we have

d

ds
Γ(s)ψ(s) = Γ′(s)ψ(s) + Γ(s)ψ′(s) = Γ(s)ψ2(s) + Γ(s)ψ′(s).

The derivative ψ′ can be found under the name polygamma function. Evaluating the inte-

gral at s = 1/2 yields

2

∫ ∞

0

(1/2)x−1/2e−x log2(x) dx = 2

∫ ∞

0

e−x2

log2(x2) dx = 8

∫ ∞

0

e−x2

log2(x) dx

and

∫ ∞

0

e−x2

log2(x) dx =
Γ(1/2)ψ2(1/2) + Γ(1/2)ψ′(1/2)

8
=

√
π((2 log 2 + γ)2 + 3ζ(2))

8
,

where ζ is the Riemman-Zeta function. It is known that ζ(2) = π2/6. For later use we note

that

Γ′′(1/2) =
√
π((2 log 2 + γ)2 + 3ζ(2)). (6)

Finding an analytic solution for ρ = E(| log3 |X||) when σ2 > 1/2 requires the use of

the incomplete Γ functions. With the same arguments as for the Γ function, one can show

that:

d

ds
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 4

∫ ∞

1/
√
2σ

log(x)e−x2

dx,

d

ds
γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 4

∫ 1/
√
2σ

0

log(x)e−x2

dx,

d2

ds2
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 8

∫ ∞

1/
√
2σ

log2(x)e−x2

dx,

d2

ds2
γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 8

∫ 1/
√
2σ

0

log2(x)e−x2

dx,

d3

ds3
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 16

∫ ∞

1/
√
2σ

log3(x)e−x2

dx,

d3

ds3
γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= 16

∫ 1/
√
2σ

0

log3(x)e−x2

dx.

The challenge is to find closed-form expressions for the derivatives of the incomplete Γ
functions. Because, Γ(s) = Γ(s, 1/

√
2σ) + γ(s, 1/

√
2σ) it suffices to find the derivatives

16



of Γ(s) and Γ(s, 1/
√
2σ). We calculated the first and second derivatives of Γ(s) already

and the third and the fourth derivatives are also not hard to derive:

d3

ds3
Γ(s)

∣
∣
∣
s=1/2

=
d

ds
(Γ(s)ψ2(s) + Γ(s)ψ′(s))

∣
∣
∣
s=1/2

= Γ(s)(ψ3(s) + 3ψ(s)ψ′(s) + ψ′′(s))
∣
∣
∣
s=1/2

= −
√
π((2 log 2 + γ)3 + 9(2 log 2 + γ)ζ(2) + 14ζ(3)). (7)

d4

ds4
Γ(s)

∣
∣
∣
s=1/2

=
d

ds
(Γ(s)(ψ3(s) + 3ψ(s)ψ′(s) + ψ′′(s)))

∣
∣
∣
s=1/2

= Γ(s)(ψ4(s) + 6ψ′(s)ψ2(s) + ψ′′′(s) + 4ψ′′(s)ψ(s) + 3(ψ′(s))2)
∣
∣
∣
s=1/2

=
√
π((2 log 2 + γ)4 + 18(2 log 2 + γ)2ζ(2)

+ 56(2 log 2 + γ)ζ(3) + 27ζ2(2) + 90ζ(4)). (8)

The derivatives of Γ(s, 1/
√
2σ) are more challenging to derive and we are using results

from [11, p.156/157] which apply when σ2 > 1/2. The first derivative is

d

ds
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

= − log(
√
2σ)Γ(1/2, 1/

√
2σ) +

1√
2σ
T (3, 1/2, 1/

√
2σ), (9)

where the function T is defined in [11]. Further below, we derive the particular values of T
that we need. The second derivative is

d2

ds2
Γ

(

s,
1√
2σ

) ∣
∣
∣
s=1/2

= log2(
√
2σ)Γ

(
1

2
,

1√
2σ

)

+
2√
2σ

(

− log(
√
2σ)T

(

3,
1

2
,

1√
2σ

)

+ T

(

4,
1

2
,

1√
2σ

))

,

(10)

and the third derivative is

d3

ds3
Γ

(

s,
1√
2σ

) ∣
∣
∣
s=1/2

=− log3(
√
2σ)Γ

(

s,
1√
2σ

)

+
3√
2σ

(

log2(
√
2σ)T

(

3,
1

2
,

1√
2σ

)

− 2 log(
√
2σ)T

(

4,
1

2
,

1√
2σ

)

+ 2T

(

5,
1

2
,

1√
2σ

))

.

(11)

Expansions of T (n, 1/2, 1/
√
2σ). We need the values T (3, 1/2, 1/

√
2σ), T (5, 1/2, 1/

√
2σ)

as well as T (5, 1/2, 1/
√
2σ). Under the assumption that σ2 > 1/2, we can follow the ar-

guments in [11, (31), p.156; (36), p.157] and [12, p.144]. For any n ∈ N,

T

(

n,
1

2
,

1√
2σ

)

=
1

2πi

∮

C

( −1

s+ 1

)n−1

Γ(−1/2− s)(
√
2σ)−sds,
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where i denotes the imaginary unit and C is a contour given in [12, (4), p.144] which

surrounds the poles at s = −1 and at s = 1/2 + k, for all k ∈ N. The pole at s = −1 is of

order n− 1 and the residue for n = 3 is

c3 :=
1

2
lim
z→−1

d2

dz2
(z + 1)3

(z + 1)3
Γ(−1/2− z)(

√
2σ)−z

=
σ√
2

( d2

dz2
Γ

(

−1

2
− z

) ∣
∣
∣
∣
z=−1

− 2 log(
√
2σ)

d

dz
Γ

(

−1

2
− z

) ∣
∣
∣
∣
z=−1

+ Γ

(
1

2

)

log2(
√
2σ)
)

=
σ√
2

(

Γ

(
1

2

)

ψ2

(
1

2

)

+ Γ

(
1

2

)

ψ′
(
1

2

)

− 2 log(
√
2σ)Γ

(
1

2

)

ψ

(
1

2

)

+ Γ

(
1

2

)

log2(
√
2σ)
)

=σ

√
π

2

(

(2 log 2 + γ + log(
√
2σ))2 + 3ζ(2)

)

≈ σ

√
π

2
((2.31 + log σ)2 + π2/2).

For n = 4 the residue is

c4 :=− 1

6

d3

dz3
Γ(−1/2− z)(

√
2σ)−z

∣
∣
∣
z=−1

=−
√
2σ

6

( d3

dz3
Γ(−1/2− z)

∣
∣
∣
z=−1

− 3 log(
√
2σ)

d2

dz2
Γ(−1/2− z)

∣
∣
∣
z=−1

+ 3 log2(
√
2σ)

d

dz
Γ(−1/2− z)

∣
∣
∣
z=−1

− log3(
√
2σ)Γ(1/2)

)

=−
√
2σ

6

(

Γ

(
1

2

)(

ψ3

(
1

2

)

+ 3ψ

(
1

2

)

ψ′
(
1

2

)

+ ψ′′
(
1

2

))

− 3 log(
√
2σ)
(

Γ

(
1

2

)

ψ2

(
1

2

)

+ Γ

(
1

2

)

ψ′
(
1

2

))

+ 3 log2(
√
2σ)Γ

(
1

2

)

ψ

(
1

2

)

− log3(
√
2σ)Γ

(
1

2

))

=
σ
√
2π

6

(

(2 log 2 + γ + log(
√
2σ))3 + 9ζ(2)(2 log 2 + γ + log(

√
2σ)) + 14ζ(3)

)

≈σ
√
2π

6
((2.31 + log σ)3 +

3π2

2
(2.31 + log σ) + 16.828).
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Finally, for n = 5, the residue is

c5 :=
1

2

d4

dz4
Γ(−1/2− z)(

√
2σ)−z

∣
∣
∣
z=−1

=

√
2σ

24

( d4

dz4
Γ(−1/2− z)

∣
∣
∣
z=−1

− 4 log(
√
2σ)

d3

dz3
Γ(−1/2− z)

∣
∣
∣
z=−1

+ 6 log2(
√
2σ)

d2

dz2
Γ(−1/2− z)

∣
∣
∣
z=−1

− 4 log3(
√
2σ)

d

dz
Γ(−1/2− z)

∣
∣
∣
z=−1

+ log4(
√
2σ)Γ(1/2)

)

=
σ
√
2π

24

(

(2 log 2 + γ + log(
√
2σ))4 + 18ζ(2)(2 log 2 + γ + log(

√
2σ))2

+ 56ζ(3)(2 log 2 + γ + log(
√
2σ)) + 27ζ2(2) + 90ζ(4)

)

≈σ
√
2π

24
((2.31 + log σ)4 + 3π2(2.31 + log σ)2 + 67.312 log σ + 155.49 +

7π4

4
)

The residues at z = 1/2 + k, k ∈ N, are

( −1

3/2 + k

)n−1
(−1)k

k!
(
√
2σ)−(1/2+k).

Hence,

T

(

3,
1

2
,

1√
2σ

)

= c3 +
∞∑

k=0

(−1)k

k!(3/2 + k)2(
√
2σ)k+1/2

,

T

(

4,
1

2
,

1√
2σ

)

= c4 −
∞∑

k=0

(−1)k

k!(3/2 + k)3(
√
2σ)k+1/2

,

T

(

5,
1

2
,

1√
2σ

)

= c5 +
∞∑

k=0

(−1)k

k!(3/2 + k)4(
√
2σ)k+1/2

.

A good approximation of these values can be attained by summing up to 10. For this case

we get

T

(

3,
1

2
,

1√
2σ

)

≈ c3 + 0.374σ−0.5 − 0.095σ−1.5 + 0.017σ−2.5 − 0.0024σ−3.5,

T

(

4,
1

2
,

1√
2σ

)

≈ c4 − 0.374σ−0.5 + 0.095σ−1.5 − 0.017σ−2.5 + 0.0024σ−3.5,

T

(

5,
1

2
,

1√
2σ

)

≈ c5 + 0.374σ−0.5 − 0.095σ−1.5 + 0.017σ−2.5 − 0.0024σ−3.5.

Derivation of E(log |X|), E(log2 |X|), Var(log |X|) and E(| log3 |X||). Now, integra-

tion by substitution allows us to derive the expected value, the variance, and the absolute
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third moment. In the following, assume that X is a zero mean Gaussian random variable

with variance σ2 > 0. Then

E(log |X|) =
√

2/πσ2

∫ ∞

0

log(x)e−x2/2σ2

dx

=
2√
π

∫ ∞

0

log(x)e−x2

dx+
2√
π
log(

√
2σ)

∫ ∞

0

e−x2

dx

= −γ + 2 log 2

2
+ log σ +

1

2
log 2

= log σ − γ + log 2

2
≈ log σ − 0.63.

Similarly, we can derive E(log2 |X|). In detail,

E(log2 |X|) =
√

2/πσ2

∫ ∞

0

log2(x)e−x2/2σ2

dx

= (2/
√
π)

∫ ∞

0

(log(
√
2σ) + log(x))2e−x2

dx

= (2/
√
π) log2(

√
2σ)

∫ ∞

0

e−x2

dx+ (4/
√
π) log(

√
2σ)

∫ ∞

0

log(x)e−x2

dx

+ (2/
√
π)

∫ ∞

0

log2(x)e−x2

dx

= log2(
√
2σ)− log(

√
2σ)(γ + 2 log 2) +

((2 log 2 + γ)2 + π2/2)

4
.

Combining these we find the variance of log |X| to be

Var(log |X|) = E(log2 |X|)− E(log |X|)2

= log2(
√
2σ)− log(

√
2σ)(γ + 2 log 2) +

((2 log 2 + γ)2 + π2/2)

4

− (2 log σ − γ − log 2)2

4
= π2/8, (12)

which is independent of σ > 0.

To derive the third absolute moment of log |X|, we expand a third-order polynomial

below and we apply the earlier derived results on the incomplete Γ functions.

E(| log3 |X||) =
√

2/πσ2

∫ ∞

0

| log3(x)|e−x2/2σ2

dx

=
√

2/πσ2

(∫ ∞

1

log3(x)e−x2/2σ2

dx−
∫ 1

0

log3(x)e−x2/2σ2

dx

)

=
2√
π

(
∫ ∞

1/
√
2σ

(log(
√
2σ) + log(x))3e−x2

dx−
∫ 1/

√
2σ

0

(log(
√
2σ) + log(x))3e−x2

dx

)

.
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The third-order polynomial inside the integrals is

log3(
√
2σ) + 3 log2(

√
2σ) log(x) + 3 log(

√
2σ) log2(x) + log3(x).

We will now address each of the terms in turn. The first term corresponds to

log3(
√
2σ)

(

2√
π

∫ ∞

1/
√
2σ

e−x2

dx− 2√
π

∫ 1/
√
2σ

0

e−x2

dx

)

= log3(
√
2σ)(1−2erf(1/

√
2σ)),

where erf is the error function. The second term corresponds to

6√
π
log2(

√
2σ)

(
∫ ∞

1/
√
2σ

log(x)e−x2

dx−
∫ 1/

√
2σ

0

log(x)e−x2

dx

)

=
6√
π
log2(

√
2σ)

(
d

ds
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d

ds
γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

)

=
6√
π
log2(

√
2σ)

(

2
d

ds
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d

ds
Γ(s)

∣
∣
∣
s=1/2

)

.

The third term is

6√
π
log(

√
2σ)

(
∫ ∞

1/
√
2σ

log2(x)e−x2

dx−
∫ 1/

√
2σ

0

log2(x)e−x2

dx

)

=
6√
π
log(

√
2σ)

(

2
d2

ds2
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d2

ds2
Γ(s)

∣
∣
∣
s=1/2

)

.

Similarly, the last term is equal to

2√
π

(

2
d3

ds3
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d3

ds3
Γ(s)

∣
∣
∣
s=1/2

)

.

Combining these, we find that under the assumption that σ2 > 1/2, ρ = E(| log3 |X||) is

equal to

log3(
√
2σ)(1− 2erf(1/

√
2σ)) +

6√
π
log2(

√
2σ)

(

2
d

ds
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d

ds
Γ(s)

∣
∣
∣
s=1/2

)

+
6√
π
log(

√
2σ)

(

2
d2

ds2
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d2

ds2
Γ(s)

∣
∣
∣
s=1/2

)

+
2√
π

(

2
d3

ds3
Γ(s, 1/

√
2σ)
∣
∣
∣
s=1/2

− d3

ds3
Γ(s)

∣
∣
∣
s=1/2

)

. (13)

The derivatives of the Γ function and incomplete Γ function are given in Equations (5), (6),

(7), (9),(10) and (11).
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A bound on ρ. The above approach does not work when σ2 ≤ 1/2 and we need an

alternative approach for that. Even when the above approach works it might be convenient

to have a simple expression that bounds ρ. By an application of HÈolder’s inequality we get

such a simple bound that holds for any σ > 0. The bound is based on the 4’th moment of

log |X| which is

E(log4 |X|) =
√

2

πσ2

∫ ∞

0

log4(x)e−x2/2σ2

dx

=
2√
π

∫ ∞

0

log4(
√
2σx)e−x2

dx

= log4(
√
2σ)− 2 log3(

√
2σ)(γ + 2 log 2) +

3

2
log2(

√
2σ)((2 log 2 + γ)2 + π2/2)

− 1

2
log(

√
2σ)((2 log 2 + γ)3 +

3π2

2
(2 log 2 + γ) + 14ζ(3))

+
1

16
((2 log 2 + γ)4 + 3π2(2 log 2 + γ)2 + 56(2 log 2 + γ)ζ(3) + 7π4/4).

and

ρ = E(log3 |X|) ≤ (E(log4 |X|))3/4. (14)

A.2 Independence of S and |X|
It is well known that the sign S of a centered normal distributed random variable with

variance σ2 > 0 and its absolute value |X| are independent. One way to verify this is to

recall that S and |X| are independent if for all a, b ∈ R, Pr(S ≤ a, |X| ≤ b) = Pr(S ≤
a) Pr(|X| ≤ b). It is easy to verify this: for any b ∈ R and a < −1

Pr(Si ≤ a, |Xi| ≤ b) = 0 = Pr(Si ≤ a) Pr(|Xi| ≤ b)

and for a ≥ 1,

Pr(Si ≤ a, |Xi| ≤ b) = Pr(|Xi| ≤ b) = Pr(Si ≤ a) Pr(|Xi| ≤ b).

Finally, for −1 ≤ a < 1, and b ≥ 0 (b < 0 is trivial), we have due to the symmetry of X
that

Pr(Si ≤ a) Pr(|Xi| ≤ b) = Pr(|Xi| ≤ b)/2

= Pr(−b ≤ Xi ≤ b)/2 = Pr(0 ≤ Xi ≤ b) = Pr(−b ≤ Xi ≤ 0)

= Pr(Xi < 0,−Xi ≤ b) = Pr(Xi < 0, |Xi| ≤ b) = Pr(Si ≤ a, |Xi| ≤ b).

B Further Results on GPs and DGPs

B.1 Representing a GP with Quadratic Kernel by a Multivariate Nor-

mal RV

GPs can often be written as a (potentially infinite) linear combination of normally dis-

tributed random variables. That is the Karhunen-Loève expansion which is based on an
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eigendecomposition of the kernel-integral operator corresponding to the covariance func-

tion (Mercer’s theorem). For polynomial kernels a more direct approach is possible. We

demonstrate this approach here. We start with a simple 2-dimensional example, for which

the key steps are transparent, before approaching the more abstract general case.

2-Dimensional feature map. Consider the following kernel function on R,

k0(x, y) = x2y2 + xy =

(
x2

x

)⊤(
y2

y

)

= ψ(x)⊤ψ(y),

where we will represent ψ(x) as ψ(x) = (ψ1(x), ψ2(x))
⊤. The RKHS H corresponding to

k0 is 2-dimensional since x2 and x are linearly independent.

We start by taking a closer look at H0. Similarly as for the linear kernel in Section 3,

we can write the RKHS in the form

H0 = {h(x) = α1ψ(−1)⊤ψ(x) + α2ψ(−1/2)⊤ψ(x) : α1, α2 ∈ R}

= {h(x) = α1(x
2 − x) + α2(

1

4
x2 − 1

2
x) : α1, α2 ∈ R},

since ψ(−1)⊤ψ(x) and ψ(−1/2)⊤ψ(x) are linearly independent and H0 is 2-dimensional.

Let g0 be the GP corresponding to kernel k0 then g0 attains values in H0 and there are

random variables α1,ω and α2,ω such that for all x ∈ R,

g0(x) = α1,ω(x
2 − x) + α2,ω(

1

4
x2 − 1

2
x).

Consider x1 = −1 then g0(−1) = 2α1,ω + (3/4)α2,ω. Furthermore, for x2 = −1/2 we

find that g0(−1/2) = (3/4)α1,ω + (5/16)α2,ω. Let C be a covariance matrix of a gaussian

vector (g0(x1), g0(x2)), and is given by

C =

(
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

)

=

(
2 3/4
3/4 5/16,

)

since k(−1,−1) = 1 + 1 = 2, k(−1,−1/2) = 3/4, k(−1/2,−1/2) = 5/16. Therefore,

we get
(
g0(−1)
g0(−1/2)

)

= C

(
α1,ω

α2,ω

)

=

(
2 3/4
3/4 5/16

)(
α1,ω

α2,ω

)

.

The covariance between α1,ω and α2,ω is given by

Cov

((
α1,ω

α2,ω

))

= C−1Cov

((
g0(−1)
g0(−1/2)

))

C−1

=

(
5 −12

−12 32

)(
2 3/4
3/4 5/16

)(
5 −12

−12 32

)

=

(
5 −12

−12 32

)

= C−1.
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Hence, we get

E(α1,ωα2,ω) = −12,

and (
α1,ω

α2,ω

)

∼ N

(

0,

(
5 −12

−12 32

))

.

Rearranging the terms gives

g0(x) = x2(α1,ω + (1/4)α2,ω) + x(α1,ω + (1/2)α2,ω)

= ψ1(x)(α1,ωψ1(x1) + α2,ωψ1(x2)) + ψ2(x)(α1,ωψ2(x1) + α2,ωψ2(x2))

=

(
Y1
Y2

)⊤
ψ(x),

where (
Y1
Y2

)

=

(
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

)(
α1

α2

)

.

It is easy to see that

(
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

)⊤(
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

)

= C.

In the following, let

B =

(
ψ1(x1) ψ1(x2)
ψ2(x1) ψ2(x2)

)

and note that

(
Y1
Y2

)

= B

(
α1

α2

)

.

The covariance between Y1 and Y2 is

Cov

((
Y1
Y2

))

= B Cov

((
α1,ω

α2,ω

))

B⊤.

Following that, we multiply both sides by B on the right, which gives

Cov

((
Y1
Y2

))

B = BC−1B⊤B = B.

Therefore,

Cov

((
Y1
Y2

))

= I,

and (
Y1
Y2

)

∼ N

(

0,

(
1 0
0 1

))

.
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The general case. We consider now the polynomial kernel function. The argument be-

low generalizes, however, right away to any other kernel function which has a finite dimen-

sional feature vector. Denote the parameters of the polynomial kernel function with integer

parameter d ≥ 1, and real valued c > 0 on R,

k(x, y) = (xy + c)d = ϕ(x)⊤ϕ(y),

where

ϕ(x) =

(

xd,

(
d

1

)1/2

xd−1c1/2,

(
d

2

)1/2

xd−2(c2)1/2, . . . , cd/2

)⊤

.

The functions xd, xd−1c1/2, . . . , cd/2 are linearly independent and [13, Ex 3.7] shows that

these functions all lie in H. Hence, H is at least d+1-dimensional. In fact, it follows from

[13, Thm 2.10] that H is d + 1-dimensional. This implies that there are x1, . . . , xd+1 ∈ R

such that

H =
{d+1∑

i=1

αik(xi, ·) : αi ∈ R, i ≤ d+ 1
}

.

Let g be a GP with kernel k then g attains values in H and

g(x) =
d+1∑

i=1

αi,ωk(xi, x)

for d+ 1 stochastic real valued coefficients α1,ω, . . . , αd+1,ω. In particular,






g(x1)
...

g(xd+1)




 = Cαααω and C−1






g(x1)
...

g(xd+1)




 = αααω,

where αααω = (α1,ω, . . . , αd+1,ω)
⊤ and C = (k(xi, xj))i,j≤d+1. That C is invertible can

be seen in the following way: the functions k(x1, ·), . . . , k(xd+1, ·) are linearly indepen-

dent since they span the d + 1-dimensional space H. In particular, for any h there exists

a1, . . . , ad+1 such that h =
∑d+1

i=1 aik(xi, ·) and

∥h∥2 = aaa⊤Caaa,

where aaa = (a1, . . . , ad+1)
⊤. If C would not be of full rank then there would exist an

eigenvector eee of C with eigenvalue 0. The function h corresponding to eee would not be the

constant 0 function since eee would not be zero. However, in this case

0 ̸= ∥h∥2 = eee⊤Ceee = 0,

and C has to be of full rank.

Because αααω is a linear transformation of a zero mean Gaussian vector it follows that

αααω is also a zero mean Gaussian vector. The matrix C is the covariance matrix of the

d+ 1-dimensional Gaussian vector (g(x1), . . . , g(xd+1))
⊤ and

Cov(αωαωαω) = C−1CC−1 = C−1.
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Writing the Gaussian process in terms of the feature map ϕ,

g(x) =
d+1∑

i=1

αi,ωϕ(xi)
⊤ϕ(x)

and denoting the different entries of ϕ(x) by ϕ1(x), . . . , ϕd+1(x), we define d+1 zero mean

Gaussian random variables Y1, . . . , Yd+1 through

d+1∑

i=1

αi,ωϕ(xi) =
(
ϕ(x1) . . . ϕ(xd+1

)

︸ ︷︷ ︸

B

αααω =






Y1
...

Yd+1






Note that g(x) = Y ⊤ϕ(x). The random vector Y = (Y1, . . . , Yd+1)
⊤ has covariance

Cov






Y1
...

Yd+1




 = BCov(αααω)B

⊤.

Multiplying by B on the right yields

Cov






Y1
...

Yd+1




B = BCov(αααω)B

⊤B = B,

since B⊤B = C. The matrix B is invertible ... and multiplying the above from the right by

B−1 leads us to

Cov






Y1
...

Yd+1




 = I, and






Y1
...

Yd+1




 ∼ N(0, I).

B.2 A Berry-Esseen Bound for the case that d1 = . . . = dℓ−1 = 2

Before considering a general case, we first examine the approximation of DGPs, where

the successive layers use a kernel ki(x, y) = (xy)di with di = 2. We will also define

d↓i =
∑i−1

j=0 2 for all i = 1, . . . , ℓ− 1. As it was shown above, the GP g1 can be represented

as

g1(x) =






Z1
...

Zd+1






⊤




ϕ1(x)
...

ϕd+1(x)




 ,

where (Z1, . . . , Zd+1)
⊤ ∼ N(0, I). Also, let Yi ∼ N(0, σ2

i ) be i.i.d, and independent of

Z1, . . . Zd+1, and such that gi(x) = Yix
2 for all 2 ≤ i ≤ ℓ. Then the DGP can be written as
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gℓ ◦ · · · ◦ g1(x) = Yℓ(Yℓ−1)
d↓
1(Yℓ−2)

d↓
2 × · · · × (Y2)

d↓
ℓ−2

(d+1∑

i=1

Ziϕi(x)
)d↓

ℓ−1

= YℓY
2
ℓ−1Y

4
ℓ−2 × · · · × Y

2(ℓ−2)
2

(d+1∑

i=1

Ziϕi(x)
)2(ℓ−1)

.

Taking the logarithm of the absolute values of the product of Y -terms yields 2(ℓ−2) log |Y2|+
· · · + 2 log |Yℓ−1| + log |Yℓ| =

∑ℓ
j=2 cj log |Yj|, where cj = 2(ℓ − j) for j = 2, . . . , ℓ − 1

and cℓ = 1. We then want to apply the Berry-Esseen Theorem, and in order to do this

we first define σi,log = c2i Var(log |Yi|) and ρi,log = c3iE(| log |Yi||3) for all i = 2, . . . , ℓ.
Furthermore, to derive the expression for the Berry-Esseen bound, we first have

( n∑

i=2

σ2
i,log

)−3/2
n∑

i=2

ρi,log =

∑ℓ
i=2 c

3
iE(| log |Yi||3)

(
∑ℓ

i=2 c
2
i )

3/2(Var(log |Yi|))3/2
,

where the sums of the coefficients
∑ℓ−1

i=2 c
2
i and

∑ℓ−1
i=2 c

3
i can be found as

ℓ−1∑

i=2

c2i = 4
ℓ−1∑

i=2

(ℓ− i+ 1)2 = 4
ℓ−2∑

i=1

(ℓ− i)2 = 4
ℓ−1∑

i=1

i2 − 4 =
2ℓ(ℓ− 1)(2ℓ− 1)

3
− 4,

ℓ−1∑

i=2

c3i = 8
ℓ−1∑

i=2

(ℓ− i+ 1)3 = 8
ℓ−2∑

i=1

(ℓ− i)3

= 8
(

−1

2
ℓ3(ℓ− 1) +

1

2
ℓ2(ℓ− 1)(2ℓ− 1)−

ℓ−1∑

i=1

i3 − 1
)

= 8
(

−1

2
ℓ3(ℓ− 1) +

1

2
ℓ2(ℓ− 1)(2ℓ− 1)− ℓ2(ℓ− 1)2

4
− 1
)

= 2ℓ2(ℓ− 1)2 − 8.

For later use we also find

ℓ∑

i=2

ci =
ℓ−1∑

i=2

ci+1 = 2
ℓ−1∑

i=2

(ℓ−i+1)+1 = 2
ℓ−2∑

i=2

(ℓ−i)+1 = ℓ(ℓ−1)−2+1 = ℓ(ℓ−1)−1

Hence, we get
∑ℓ

i=2 c
2
i =

2ℓ(ℓ−1)(2ℓ−1)
3

− 3, and
∑ℓ

i=2 c
3
i = 2ℓ2(ℓ− 1)2 − 7, and this gives
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us the expressions for the bound, the mean and the variance of Y

0.56
( ℓ∑

i=2

σ2
i,log

)−3/2
ℓ∑

i=2

ρi,log = 0.56
E(| log |Y1||3)

(Var(log |Y1|))3/2
(2ℓ2(ℓ− 1)2 − 7)33/2

(2ℓ(ℓ− 1)(2ℓ− 1)− 9)3/2

≤ 3ℓ−1/2 E(| log |Y1||3)
(Var(log |Y1|))3/2

,

(15)

ℓ∑

i=2

ciE(log |Yi|) =
ℓ∑

i=2

ciE(log |Yi|) ≈ (ℓ(ℓ− 1)− 1)(log σ − 0.63)

= ((ℓ− 1)2 + ℓ)(log σ − 0.63),

(16)

Var(
ℓ∑

i−2

c2i log |Yi|) =
ℓ∑

i−2

c2i Var(log |Yi|) =
(2ℓ(ℓ− 1)(2ℓ− 1)

3
− 3
)

Var(log |Y1|)

=
π2

8

(2ℓ(ℓ− 1)(2ℓ− 1)

3
− 3
)

.

(17)

The Berry-Esseen Theorem guarantees that

sup
x∈R

|Pr((σ2
2,log + · · ·+ σ2

ℓ,log)
−1/2

ℓ∑

j=2

(cj log |Yj| − cjE(log |Yj|)) ≤ x)− Φ(x)|

≤ 0.56
( n∑

i=1

σ2
i,log

)−3/2
n∑

i=1

ρi,log.

Similarly, to the derivation in Section 3.2 by substitution,

sup
x∈R

|Pr
(

|Yℓ|
ℓ−1∏

i=2

|Yi|2(ℓ−i) ≤ x
)

− Pr(eY ≤ x)| = sup
x∈R

|
ℓ∑

j=2

cj log |Yj| − Pr(Y ≤ x)|,

where Y ∼ N(
∑ℓ

i=2 ciE(log |Yi|),
∑ℓ

i=2 σ
2
i,log) and the last term is upper bounded by the

bound given in (15). Note that Yℓ
∏ℓ−1

i=2 Y
2(ℓ−i)
i = Sℓ

∏

i∈I Si|Yℓ|
∏ℓ−1

i=2 |Yi|2(ℓ−i), where we

can write S = Sℓ

∏

i∈I Si, since S has the same distribution as the product on the right

hand side, and attains values −1 and 1 with probability 1/2.

B.3 Incorporating (g1(x))
c1 in the Approximation

In Section 3.2 we derive an approximation that leads us to a bound on

sup
y∈R

∣
∣Pr
(

S

ℓ∏

i=2

Yi ≤ y
)

− Pr(SeY ≤ y)
∣
∣.

The involved random variables are specified in Section 3.2. We also have a random variable

(g1(x))
c1 that we like to incorporate on both sides. In detail, we want a bound on

sup
y∈R

∣
∣Pr
(

S(g1(x))
c1

ℓ∏

i=2

Yi ≤ y
)

− Pr(S(g1(x))
c1eY ≤ y)

∣
∣.
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We can attain such a bound by using a conditional expectation argument. Note that, due to

the towering rule of conditional expectations,

Pr
(

S(g1(x))
c1

ℓ∑

j=2

cj log |Yj| ≤ y
)

= E
(

111
{

S(g1(x))
c1

ℓ∑

j=2

cj log |Yj| ≤ y
})

= E
(

E
(

111
{

S(g1(x))
c1

ℓ∑

j=2

cj log |Yj| ≤ y
}∣
∣
∣(g1(x))

c1
))

,

where 111 denotes the indicator function. Since the indicator function is real-valued, there

exists a measurable function h such that the conditional expectation is equal to h((g1(x))
c1)

(see, for example, [14, Eq. 10, p.220]). In fact, one can observe that we can choose

h(z) = E
(

111
{

Sz

ℓ∑

j=2

cj log |Yj| ≤ y
})

= Pr
(

Sz

ℓ∑

j=2

cj log |Yj| ≤ y
)

.

The same approach leads us to a function

h̃(z) = Pr
(

SzeY ≤ y
)

and

sup
z∈R

|h(z)− h̃(z)| = sup
y∈R

∣
∣Pr
(

S

ℓ∏

i=2

Yi ≤ y
)

− Pr(SeY ≤ y)
∣
∣.

Hence,

sup
y∈R

∣
∣Pr
(

S(g1(x))
c1

ℓ∏

i=2

Yi ≤ y
)

− Pr(S(g1(x))
c1eY ≤ y)

∣
∣

= sup
y∈R

∣
∣E(h((g1(x))

c1))− E(h̃((g1(x))
c1))|

∣
∣

≤ sup
z∈R

|h(z)− h̃(z)|

= sup
y∈R

∣
∣Pr
(

S

ℓ∏

i=2

Yi ≤ y
)

− Pr(SeY ≤ y)
∣
∣

and bound is not affected by the introduction of (g1(x))
c1 .
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