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Abstract

We analyze the prior that a Deep Gaussian Process with polynomial kernels in-
duces. We observe that, even for relatively small depths, averaging effects occur within
such a Deep Gaussian Process and that the prior can be analyzed and approximated
effectively by means of the Berry-Esseen Theorem. One of the key findings of this
analysis is that, in the absence of careful hyper-parameter tuning, the prior of a Deep
Gaussian Process either collapses rapidly towards zero as the depth increases or places
negligible mass on low norm functions. This aligns well with experimental findings
and mirrors known results for convolution based Deep Gaussian Processes.

1 Introduction

Deep Gaussian processes (DGPs) have been introduced by [[1] as a natural extension of
Gaussian processes (GPs) that has been inspired by deep neural networks. Like deep neu-
ral networks, DGPs have multiple layers and each layer corresponds to an individual GP. It
has recently been noted by [2] that traditional GPs attain for certain compositional regres-
sion problems a strictly slower rate of convergence than the minimax optimal rate. This
is demonstrated in [2] by showing that for a class of generalized additive models any GP
will be suboptimal, independently of the kernel function that is used. Generalized additive
models can be regarded as a simple form of a compositional model with two layers. In
contrast, [3] have shown that DGPs can attain for such problems the minimax optimal rate
of convergence (up to logarithmic factors) when the DGPs are carefully tuned. In fact, they
show that DGPs are able to attain optimal rates of convergence for many compositional
problems. Along similar lines, [4] show that for nonlinear inverse problems DGPs can at-
tain a rate of convergence that is polynomially faster than the rate that GPs with Matérn
kernel functions can attain when the unknown parameter has a compositional structure.
One well known downside of DGPs is the difficulty of sampling from the posterior distri-
bution. [S]] approach this problem by providing a particularly simple prior which facilitates



posterior calculations while guaranteeing adaptivity in the context of regression to both the
smoothness of the unknown regression function and the compositional structure.

In this paper, we focus on the prior that a DGP places on a function space. We work
in the context of polynomial kernels and we study the behavior of the priors as the depth
of the DGP increases. We show that the prior is very sensitive to the hyperparameters
that are used for the individual GPs and that small deviations of the ‘correct regime’ of
hyperparameters would either lead to an extremely tight concentration at zero or would
result in prior measures that place negligible mass on functions of low norm. In earlier
work, [6] have observed in experiments that the prior of a DGP with Gaussian kernels
shows pathological behavior. They also analyzed the derivative of a DGP to get insight
into this pathological behavior, but did not provide an analysis of the behavior of the prior
itself. [7] provide a deeper analysis by phrasing a DGP as a Markov chain and studying
its ergodic behavior. In particular, [7, Thm 4] states that the output of a DGP becomes
constant (in a form of point-wise convergence) as the depth increases when a Gaussian
kernel is used and a condition on the parameters of the kernel is satisfied. They also study
a DGP where instead of a composition of GPs a convolution of GPs is used. This form of
a DGP differs from the DGPs that are commonly used in the literature [1, 16} 2} 3, 5], but
has the advantage that it is amenable to a convolution and Fourier theory based argument.
This allows the authors to get deep insights into this type of DGPs. They find that for a
convolutional DGP, Fourier coefficients associated with the DGP converge either to zero or
diverge (almost surely). Furthermore, the eigenvalues of a covariance operator associated
with the DGP control if the coefficients converge to zero or diverge [/, Thm 16].

One of the key research challenges in the area of DGPs is to gain deeper insight into
the behavior of standard DGPs. Such insight is crucial to make sense of the ‘contradictory’
observations in the literature: on the one hand, DGPs are often used successfully in practice
[1] and DGPs outperform GPs in a variety of statistical tasks in terms of rate of convergence
[3] while, on the other hand, there is the pathological behavior of DGPs that has been
observed in experiments and in convolutional DGPs [6} 7]. This research challenge is also
far from trivial since the convolutional structure allows for significant simplifications in the
analysis of [7], and it is unclear how to get tight control of the behavior of a DGP in its
absence.

In the context of polynomial kernels, we develop an alternative approach that does
not rely on convolutions and applies to standard DGPs. Our approach makes use of the
fact that for polynomial kernel functions the sample paths of GPs lie within the reproduc-
ing kernel Hilbert space associated to that kernel function. Combining this fact with a
Karhunen-Loeve type decomposition of the GPs allows us to write the composition of GPs
as a product of normally distributed vectors. We study these products then with the help
of the Berry-Esseen Theorem. It is worth highlighting that earlier works focused on Law
of Large Numbers and Ergodic type results which provide neither rates of convergence
nor finite sample bounds. In contrast to that, the Berry-Esseen approach that we develop
provides both rates of convergence and finite sample bounds.

Our main result is Theorem |1} which provides a bound on the approximation of a DGP
geo...ogy(x), where g; has covariance ki (z,y) = (zy + ¢)%, ¢ > 0, and the g;’s have
covariance k;(x,y) = o2(xy)%, where o; > 0 and the d;’s are non-zero integers. For such



a process we find a normally distributed random variable Y and a random sign .S such that

¢ ajp !
sup |Pr(geo...og(x) <t) —Pr(Se’ (gi(z))* < t)| <0.56 <Z Ui2,log> Zpi,loga
=2 =2

z,teR

where afog, Plog 18 the variance and absolute third moment of certain log-normal random
variables. The constant ¢; is equal to dy + ... + dy and will generally be very large. It is
worth highlighting that we have here an approximation of a DGP that consists of a product
of a single GP, a random sign, and a log-normal random variable.

Another important result that can be derived from the theorem is that when o5 = ... =
oy =: o, then the median of the DGP converges rapidly to zero in ¢ if 0 < exp((y +
log2)/2), where ~ is the Euler-Mascheroni constant, and diverges when o > exp((y +
log 2)/2). This is the same threshold that was found by [7] in the context of convolutional
DGPs.

The remainder of the paper is organized as follows: in Section [I.I] we provide key
definitions and results that we use throughout. In Section [2, we start with the simple case
of products of Gaussian random variables; the motivation for this is that the main averaging
effects that are at play are very transparent in this simple setting. Section [3|is our main
section. We start with the simple case of a product of GPs with linear kernels before
approaching the case of polynomial kernels. In Section f] we provide then a discussion
of the results and we put these in perspective. In particular, we highlight challenges that
need to be overcome to extend our results beyond the polynomial kernel case. There are
also two appendices with technical results. In Appendix |A] we provide a variety of closed
form expressions for moments of log-normal random variables that we use throughout, and
Appendix B contains a variety of auxiliary results for DGPs that we use.

1.1 Preliminaries

A zero mean GP g on R is a stochastic process which is fully specified by its covariance
function k(z,y),z,y € R. The covariance function k is positive semi-definite. The func-
tion k is called the covariance function since Var(g(z)) = k(z,2) and Cov(g(z)g(y)) =
k(xz,y) for all z,y € R. In the context of kernel methods, one also calls & the kernel
function and we use the two terms interchangeably. To each covariance function there cor-
responds a reproducing kernel Hilbert space (RKHS) . In case that #, is finite dimen-
sional it is known that the GP ¢ attains values in Hy. In other words, the sample paths are
RKHS functions when #,, is finite dimensional. If H,, is infinite dimensional then the sam-
ple paths lie almost surely not in H;. Often it is convenient to work with a so called feature
map ¢ : R — H,;, which satisfies (¢(z), ¢(y)) = k(z,y), where the inner product is here
the inner product of . In the finite dimensional case, we also write ¢(x) " ¢(y) = k(x,y).
A DGP of depth ¢ on R is a composition of ¢ zero mean GPs gy 0. ..o g, with corresponding
covariance functions ky, . . ., k.

We make frequent use of the Central Limit Theorem (CLT) and different versions of
the Berry-Esseen Theorem. In particular, we use the following two versions of the Berry-
Esseen Theorem, which guarantee uniform convergence of certain normalized sums to a
Gaussian limit: (1) The first version that we use applies to zero mean i.i.d. random variables
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X1, ..., X, with variance Var(X;) = o2 and absolute third moment p = E(|X;[*). Let
S, = Xy + ... 4+ X, then this version of the Berry-Esseen Theorem states that

0.336 0.41503
sup | Pr(n 20713, <) — ®(z)| < (p3+1/2 : )’
z€R o

where @ denotes the cumulative distribution (CDF) function of a standard normal random
variable.

(2) The second version avoids the need of identically distributed random variables at
the cost of a slightly more conflated theorem statement. Consider again independent zero
mean random variables X7, . .., X,, but now with individual variances Var(X;) = o7 and
absolute third moments p; = E(|X;|*), i« < n. The second version of the Berry-Esseen
Theorem states that

sup|Pr( _ Sn - gx) —P(z)| < 0.56(&03)

zeR o] +...+o; i—1

-3/2 2

Z Pi-
i=1

Note that the n~'/? factors that appear in the first version are subsumed in the variance

terms; i.e. when oy = ... = 0, = o then \/o7 + ... + 02 = y/no and when additionally
p1=...=p,=pthen (3, a7) > i1 pi = p/y/no’.

Besides the definition of a DGP, all of the above results are classical and can be found
in textbooks such as [8]].

2 Products of Gaussian Random Variables

We start by analyzing the products of Gaussian random variables before approaching DGPs
in the following section. We will see that such products are closely related to compositions
of GPs with linear kernels. Let X1, ..., X, be i.i.d. standard random variables with variance
02 > 0 and consider their product Hle X;. Figure || plots the density of the product
in dependence of ¢. Notice that the left plot uses 0 = 1 and that the density rapidly
concentrates around zero in this case, as ¢ increases. The right plot considers larger values
of o (the values are 2, 2.5 and 3) and we can notice the opposite effect: the probability for
the absolute value of the product to attain values below 1/2 rapidly falls as ¢ increases. We
will observe this effect repeatedly in other contexts.

We will now aim to characterize the distribution of the product as ¢ increases. In order

to do that, we apply the CLT to the product. We write the product as

[ (1) (1)

=1

where 5; is the sign of X,

g _ 1 if X; >0,
)] =1 otherwise.

Note that .S; is independent of | X;| (Appendix i and that Hle S; attains values 1 and —1
each with probability 1/2. If we take the logarithm of Hle | X;| then the CLT is applicable
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Figure 1: (a) The densities of the product of / = 1,10, 30 normally distributed random
variables with mean ; = 0 and variance 0> = 1 are shown. (b) The probability of the
product attaining values around zero for larger o is shown.

if the variance of log | X;| is finite. The variance of log | X;| is, in fact, finite (See (I2)) in the
Appendix) and the CLT can be applied. Under the assumption X1, ..., X, are i.i.d. we can

infer that ,

123 (log|Xi| — E(log |X.])) % N(0, Var(log | X)),

i=1

where d denotes convergence in distribution. In particular, for large £ the sum ¢~/ Zle log | X5
has approximately the distribution N (v/£E(log | X;|), Var(log | X;|)). Furthermore, the con-
tinuous mapping theorem [9, Thm 2.3] can be applied since the exponential function is
continuous, and it follows that a normalized version of the product converges in distribu-
tion,

¢ 1V g
(E eXp(ELii |Xz|))> B eXP(% ;(log | Xi| — E(log |Xz|))> 4 e

where Z is normally distributed with mean zero and variance Var(log|X|). For large
enough ¢ we then have the approximation,

¢
H | X, |V/VE s @7V IXa) (ip distribution).
=1

In other words, Hle | X;]1/V¥ is approximately log normally distributed with mean param-
eter v/(E(log |X;|) and variance parameter Var(log|X;|). Figure [2[shows a comparison
of this approximation and the corresponding distribution of the scaled product (gained by
sampling).
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Figure 2: (a) The probability of the scaled product and the log-normal approximation to
attain values above 1/2 are compared (¢ = 1). The plot is complemented by an error
bound. (b) The same quantities are compared but on a logarithmic scale (the error bound is
omitted).

One might wonder if the normalizing factor /~'/2 can be incorporated into the variance
of the X; so that we can say something about the product Hle X, of suitably normalized
Gaussian random variables X;. This does not work, however, since Var(log | X;|) = 72/8
independently of the variance parameter o > 0. This is a consequence of Var(log |aX;|) =
Var(log |a| + log | X;|) = Var(log | X;|), which holds for any a € R.

2.1 An Application of the Berry-Esseen Theorem

Ideally, we want to be able to infer properties of Hle X, or of Hle X, a € N. This
will ultimately be useful for understanding how products of Gaussian processes with poly-
nomial kernels behave. When following the earlier approach, we are led to expressions of
the form Yt log |X;| and a 3_'_, log | X,|. The leading o term in the latter expression
is of minor importance. However, the lack of the normalizing factor /~'/2 in front of the
sums is a significant problem, since we cannot apply the CLT directly. This problem can
be understood in terms of point-wise convergence. The CLT tells us that for any z € R,
limy oo Pr(£12 324 (log | X;| — E(log | X,])) < ) = ®(x/01), where ® denotes the
CDF of a standard normal random variable and o3, = Var(log |X,|) = 7*/8. To control
the difference between the CDF of the unnormalized sum and ¢ we can try

—1/2

‘ Y4
Pr(allog 2 (log | X~ E(log | X)) < ”’) = Pr<€ 3 "(log ||~ E(log | X[)) < g—l/zw)

i=1 log ¢

and hope that the latter expression gets close to ®(¢~/2z). However, the CLT does not
allow us to infer this convergence since the location /~'/22 changes with /.

One way to address this nettle is to move from point-wise convergence to uniform
convergence. This can be achieved by using the Berry-Esseen Theorem instead of the CLT.
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The Berry-Esseen Theorem guarantees that

¢

0.336(p7, + 0.41503 )

sup Pr(K_I/QJ_OI log | X;| — E(log | X;])) < x) —®(x)| < g oy
up) ok 3l X — Elog ) @) Y

where we assume that our Gaussian variables X, ..., X, are i.i.d., centered, and have
variance oy, and where we use the definition pf,, = E(| log® | X;||). We provide a closed-
f01‘rm expression of pf,, in Appendix [A], @, as well as an easier to inte@ret bound (14).
It is also easy to get very accurate approximations of py,, through sampling. We can now
infer that, uniformly in z € R,

¢
|Pr<agé Z(log | X;| — E(log | X3])) < :10> — D0 V2)|
i=1
¢
— ’PF<€*1/201;g1 Z(log | X;| — E(log | X;])) < gfl/zx) — (0 2g)|
i=1
¢

< sup | Pr(¢7207, 3 (log | Xi| — E(log | X,))) < y) — @(y)

yeR i1
< 0.336(,0{{jg + 0.4150130g).
\/Zafgg

We can rewrite this further to get an approximation of the law of Zle log | X;

)

l ¢
Pr(D - 10gXil < oz + (B (log |Xa)) = Pr(o,t D (log | Xi| — Ellog | X,))) < )

i=1 i=1

~ OV ).

In other words, with y = oy,,x + (E(log | X7]),

L
Pr(Dlog Xl < y) & @(¢ 2oy Ly — LE(l0g | Xi))). (D
i=1

If we let Z ~ N((E(log |X1]), {ar,,) then (T implies

0.336(pf, + 0.41503,)
\/zalsog .

Since Pr(Z < z) = Pr(e? < %), and similarly for Zle log | X;|, we find that

¢
sup|Pr(Zlog]Xi| < :v) —Pr(Z <z)| <
zeR i1

V4 V4
sup | Pr(TT 1] < ) = Pr(e” < 2)] = sup| Pr([] 1l < e) = Pr(e” < )
z€R im1 z€R i=1

o 3
_ 0336(pf, +0.41501,)
\/za-igog
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Figure 3: (a) The distribution of the product of ¢ = 1, 10 and 30 log-normal random vari-
ables with o = 3 is shown. (b) The probability for the product and the log-normal approx-
imation to attain values above 1/2 is shown (o = 3).

The median of the log-normal random variable e is approximately exp(¢(log(c) — 0.63)).
In particular, when o < %% =~ 1.87, the median approaches exponentially fast 0, while
when o > %93, the median diverges to infinity at an exponential rate in . We demonstrate
this divergence effect in Figure |3| for Hle X; and the approximation Sye?, where Sy is
a random variable that is independent of Z, and which attains values +1 and —1 with
probability 1/2 each.

2.2 Convergence & Approximation for Powers of X

We aim to generalize the above approach to products of the form Hle X When «a is
even then this product will always be positive and will be equal to Hle | X;|*. When « is
odd then Hle X, =5, Hi , where S, attains values +1 and —1 with equal proba-
bility. We will apply again the the Berry-Esseen Theorem to approximate the distribution
of [;_, | Xi|*. To this end, note that

~

Sup|Pr<€ 12(0014g) IZ alog|X;| —aE(log|X;])) < ) — O(x)|

zeR i—1
0.336(apf,, + 0.415(o105)*)
B (Oéo'log)s\/Z 7




where the o’s on the right side cancel. As in the previous section, after introducing the
random variable Z,, ~ N ({aE(log | X1]), {(aoi,g)?), we can infer that

¢ ¢
sup | Pr(H | X" < x) — Pr(e?> < z)| = sup| Pr(H | X" < ex> — Pr(e?e < %)
z€eR =1 zeR i1

_ 0.336(f,, +041507,,)
B Uigog\/z .

Note that «v plays a similar role as ¢ and the distribution of Z,, for, say, « = 5 and ¢ = 10 has
the same mean as the random variable Z; with ¢ = 50. This implies that larger values of «
lead to a more rapid collapse of the support of e?=. For example, the median of the variable
eZe is La(log(a) — 0.63). As the factor « increases, we have an even faster convergence of
the median to 0 for 0 < 1.87 and divergence to infinity when o > 1.88.
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100
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Figure 4: (a) Five draws from a DGP with ¢ = 30 layers, a linear kernel, and o = 1 is
shown. Notice the scale of the y-axis. (b) As for (a) but with o = 2.5.

3 Limit Distributions of Deep Gaussian Processes

The results in the last section on the distribution of Hle X, where X; are normally dis-
tributed, have natural links to the distribution of deep GPs. To see this, let us start with
the simple case where the kernel functions of the different layers are all k(x,y) = o?zy
and z,y € R. Now, consider ¢ independent Gaussian processes g1, . . ., g, each of which
has zero mean and kernel function k. The process g, o ... o g1 is a Deep GP on R. The
kernel k(x,y) can also be written as an inner product of a feature map ¢. In particu-
lar, if we use ¢(z) = oz then k(z,y) = &(z)¢(y). Each of the individual GPs attains
values in the RKHS H,;, that corresponds to k. Note that this RKHS can be written as
{h:R—=R:h(x)=ap(y)p(x),a,y e R} ={h:R - R: h(z) =ap(l)¢(z),y € R}
since ¢ is linear in this context. Since ¢(1) = o we know that each path drawn from



the GP will be of the form ao¢(x), where the slope o changes depending on our draw

from the GP. Let us use the notation «'” to denote the slope corresponding to the draw

from GP g; for experiment w € (), i.e. ol is the random variable that corresponds to

the slope of the paths drawn from g;. Let us now take a look at g; and aful). Fixing
some r € R, we know that g, () is a zero mean Gaussian random variable with variance
k(z,z) = 022, We also know that g (z) = o od(z) = ooz and o) = ¢i(z)/0?x.

1) . . . . )
In other words, ozfj) is a Gaussian random variable with zero mean and variance 1/ o2,

Hence, with U; = 0203 ~ N(0,02) it follows that g;(z) = alo¢(x) = Upz. By
induction we can generalize this to

L

geo...oq(x) :HUiI,

i=1

where Uy, ..., U, are i.i.d. with distribution N(0,0?). The independence of Uy, ..., U,
follows right away from the independence of g, . . ., g; since each Uj is a function of g;.

3.1 Approximation of DGPs with Linear Kernels

From the previous section, we know that g, o ... o g;(x) can be written as =S Hle Ui,
where S is independent of the U;’s and attains values +1 and —1 with equal probabil-
ity. The statement about S follows by the same argument as in Section [2, We can now
approximate the distribution of the product by means of the Berry-Esseen Theorem. In
particular, for large ¢ the product Hle |U;| will be close in distribution to e, where
Z ~ N((E(log |U1]), {at,,), with o, = Var(log |U1|) and pf,, = E(]log |U;][?). In par-
ticular, by following the same argument as in Section [2, and by incorporating the random
signs and x, we find that

¢
sup Pr(gg o...g1(x) < c) — Pr(Sze? < ¢)| = sup Pl"(S:L‘H \U;| < c) — Pr(Sze? < ¢)
x7c€R CL’,CER i=1
0.336(pf,, + 0.41507 )

< .
\/ZOI?’Og

It is worth highlighting that this bound holds uniformly over all values x. In fact, in the
linear case, this follows right away since the Berry-Esseen bound is uniform in ¢ and we
can use a simple substitution from ¢/ to ¢ to infer that the bound also holds uniformly in
x.

3.2 Approximation of DGPs with Polynomial Kernels

We will now extend the above results to DGPs of the form gy o ... o g1, where the GP ¢;
has a polynomial kernel of order dy, that is ky(x,y) = (xy + ), where d; > 0 is some
integer and ¢ > 0, and the successive GPs have kernels k;(x,y) = o?(xy)%, d; > 1,0, > 0
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and i > 2. The GP g, can be written in the following way (see Appendix [B.I]on p. 25)),

e 4\ -
gi(z) = Z Zipi(x) = Z <z) Ziﬂxd”cm,
i=1

1=0

where (Zy,..., Zas1) " ~ N(0,1) and ¢;(z) = (%) 2= #1c0-D/2 i < d+1. Similarly,
there are independent random variables Y; ~ N(0,0?), which are also independent of
Zi,...,Z441, and such that g;(x) = Y;z®%, for all 2 < i < £. We can therefore write the

DGP as

d+1

Gio-o gl(x) _ ng(}/é—l)d% (}/Z_Q)d% X oo X (}/'Q)dﬁf_z <Z Zigbi(l'))del,
=1

where we use the notation df = Z;;E dy_j, fori =1,...¢—1. Taking the logarithm of the
product of the absolute values of the Y -terms gives us dj_, log |Ya| + - - - + df log |Yy_1| +
log |Yy| = Zﬁ:z ¢;log |Y;|, where ¢; = dj_j forj=2,...¢—1,and ¢, = 1. We are now
in a position to apply the Berry-Esseen Theorem for non-identically distributed random
variables. To set this up, let 07\, = ¢ Var(log |Yj|) and pijos = ¢} E(|log|Y|]?) for
2 <43 < /. Then

L
sup | Pr((05 10, + -+ + 07105)"/* Y _(¢5108|Y;] — ¢;E(log [Yj])) < @) — (x)]

z€R
-3/2 "

<0.56 (Z ailog) > i 3)
=1 =1

As earlier, we can translate this statement into a statement about 2522 cjlog |Y;| by means
of substitution. For a given z, lety = (03 ., + - - + 07,5,) /22 + Zﬁ:z c;E(log|Y}|), then

Jj=2

1 l
Pr(D elog Vi < ) = @((0F1g +++ + 0F1) 2y = D s Ellog [Y3]) )
j=2

Jj=2

is also upper bounded by the right side of (3)). In fact, this bound holds uniformly over all
y € R. Letus introduce a random variable Y thatis independentof 71, ..., Z4.1,52,...,5¢
and which has the law N (>_;_, c;E(log |Yi]), S, 02,,,), then

-1 ‘
Suﬂg | Pr<|Yé| H Y;|o < y> —Pr(e¥ <y)| = suﬂg) | Pr(ch log |Y;] < y) —Pr(Y <y)|
ye =2 ye j=2

and the latter term is again upper bounded by the right side of @ We can translate this into
-1

a statement about the product of the ¥;’s by observing that Y, [ [.—, ¥, = S¢ [ [, Si| Y2 1= |v;

where I C {2,...,(} are the indices which correspond to odd ¢; values and S; is the sign
of Y; for all 2 < /. Since the different S;’s are independent of each other and independent
of the |Y;|’s it follows that S = Sy [, ., S; is a random variable that is independent of the
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|Y:|’s (in fact, S is also independent of 7, ..., Z;,1) and it attains values +1 and —1 with
equal probability. There is one final technical hurdle in the way to an approximation of the
DGP. We need to multiply both the product and the approximation by the random variable
(g1(x))° (strictly speaking, we can have two different probability spaces and the new space
needs to contain a copy of (¢g;(z))). In any case, we can relate the two distributions that
include (g;(z))° by means of a conditional expectation argument, which we provide in
Appendix From here we get directly to an approximation of the DGP. We summarize
this statement in the following theorem.

Theorem 1. Given a DGP g, o ... o gy on R with (-layers and corresponding inde-
pendent GPs gy, ..., g, with covariance functions ki(z,y) = (xy + )%, ¢ > 0, and
ki(x,y) = o?(zy)% where o; > 0,2 < i < {, and dy,...,d; > 1 are integers. There exist
independent Yg, ..., Yy, such that each Y; has distribution N (0, 0?) and g;(z) = Y;z%. For
2 <i <Y let o}, = c; Var(log|Y;|) and pijog = ¢} E(|log |Yi]|?). We have the following
approximation of the DGP:

—3/2

sup |Pr(geo...ogi(z) <t) — Pr(Se¥ (gi(x)) < t)] <0. 56(2 a; log)

z,teR

Z Pilog

where
¢ ;

Y ~ N(Z ciB(log Vi), Y ¢ Var(loleiD>a

=2 =2

andcy =1, ¢; = Zﬁ:i—i—l dj;, for 1 < i < { — 1. The random sign S attains values +1 and

—1 with equal probability. Furthermore, g1, S and Y are independent and we can write

G g\ V2 o
gi(z) = Z ( ; ) Ziqahid?,

=0

with Z, ..., Z, independent standard normal random variables that are independent of S
andY .

Example (dy = ... = dy, = 2): Itis instructive to analyze the distribution of S(g; (z))* e
and the Berry-Esseen bound in a concrete setting. Assume that dy = ... = dy = 2 and
09 = ... = 0y = o, for some o that we will vary, and let £ > 2. We show in Appendix
(Eq. (I3)) that the Berry Esseen bound takes in this setting the form

l
0.56( 3" 02y )
=2

Note that the bound improves with the familiar #~'/2 rate. In terms of the dependence on
o, recall that Var(log |Y;]) is independent of ¢ and the bound in Appendix on p.
shows that the dependence of E(|log |Y1]|?) on o is at most logarithmical.

372 E(]log [V1|[)

ilog < 30712 .
Zp los = (Var(log |13 ]))/2
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In terms of the distribution of Y, first note that for 2 < ¢ < ¢—1 the coefficients become
¢; = 2(¢ — i — 1) and the mean of Y becomes (App. Eq. (T6)),

l
E(Y_cB(log|Yi])) = (6(¢ = 1) = 1) E(log [Yi])) ~ ((£ = 1)* + ¢)(log(0) — 0.63).

=2
Similarly, the variance becomes (App Eq. (17))

14

;cf Var(log [Y;]) = <2£(€ - 1;(25 - 1)_3> Var(log Vi) %<2£(z - 1;(% _ 1)_3)

In terms of the log-normal random variable ¢¥" we have a similar effect as in the earlier
settings: the median of e* is exp((1/2)((¢ — 1)* + ¢)(log(o) — (v + log2)/2)) which
approaches rapidly zero when o < exp((y + log 2)/2) ~ 1.88 and, otherwise, diverges to
infinity as ¢ increases. In terms of the approximation Se¥ (g;(x))* of the DGP, note that

g =2((—1)and
B g\ 12 o\ D
(g1(2))" = (Z (z) Zipx e ) :

=0
Hence, we have two terms of large order that interact multiplicatively. If o < 1.88 and

the sum S0 (4) 1/2Zi+1xd1*ici/ 2 is strictly smaller than one then we expect the DGP to
attain tiny values. Similarly, when ¢ > 1.88 and the sum attains value above one then we
expect the DGP to attain huge values. The most interesting case is the case where the two
multiplicative terms compete: for simplicity consider the median value of e¥, let 0 = 1,
and assume that the sum attains a value of a > 1, then the product of these two terms is
approximately of the order e x a* and the term ¢ will dominate when ¢ growth. The
probability for attaining large values depends obviously on z; the larger |x| the higher the

probability to observe large values a and the longer it will take for e =** to dominate.

4 Discussion

In this paper, we demonstrated that, for a range of polynomial kernels, a DGP will either
concentrate around zero or it will generate functions that have increasingly large norms.
The regime where these two pathologies do not occur becomes increasingly smaller as the
size of the DGP increases. One can also note that kernels with higher order polynomials
will likely give rise to DGPs that show this pathological behavior earlier (we discuss this
phenomenon in the context of products of normally distributed random variables in Sec-
tion[2.2)). Another important observation is that these effects arise due to averaging effects
across the layers. One can break these averaging effects in the context of polynomial ker-
nels by choosing the degree of some kernels significantly higher than of others. Then only
a few GPs will dominate. This, however, will be similar to a DGP with fewer layers, which
defeats the purpose of DGPs.

There is a wide range of open questions, that are important to address. One of the most
important questions is how to generalize our approach to a larger class of kernel functions.

13



A major hurdle that needs to be overcome to be able to generalize the results is that GPs
with infinite dimensional RKHSs do not attain values within their RKHS. In all likelihood,
the fact that the RKHS lies dense in the space of functions in which the GP attains values
will be crucial for extensions. Another important question is why DGPs show near optimal
asymptotic rates of convergence in various problems given their pathological behavior. Is
this simply the Bernstein-von-Mises Theorem at work, or is there a deeper reason?
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A Closed-Form Solutions & Bounds

A.1 Closed form expressions for £ (log | X|), E(log* | X|), Var(log | X|)
and E(|log” | X||)

It is known that the values F(log | X|) and E(log® | X|) can be derived analytically when X
is normally distributed. With some more work one can also derive a closed-form expression
for F(|log® | X||) whenever the variance o2 of X satisfies 02 > 