Wu, L., Wang, C., Liu, J. et al. (4 more authors) (2025) Novel Design on Knee Exoskeleton with Compliant Actuator for Post-Stroke Rehabilitation. Sensors, 25 (1). 153. ISSN 1424-8220
Abstract
Knee joint disorders pose a significant and growing challenge to global healthcare systems. Recent advancements in robotics, sensing technologies, and artificial intelligence have driven the development of robot-assisted therapies, reducing the physical burden on therapists and improving rehabilitation outcomes. This study presents a novel knee exoskeleton designed for safe and adaptive rehabilitation, specifically targeting bed-bound stroke patients to enable early intervention. The exoskeleton comprises a leg splint, thigh splint, and an actuator, incorporating a series elastic actuator (SEA) to enhance torque density and provide intrinsic compliance. A variable impedance control method was also implemented to achieve accurate position tracking of the exoskeleton, and performance tests were conducted with and without human participants. A preliminary clinical study involving two stroke patients demonstrated the exoskeleton’s potential in reducing muscle spasticity, particularly at faster movement velocities. The key contributions of this study include the design of a compact SEA with improved torque density, the development of a knee exoskeleton equipped with a cascaded position controller, and a clinical test validating its effectiveness in alleviating spasticity in stroke patients. This study represents a significant step forward in the application of SEA for robot-assisted rehabilitation, offering a promising approach to the treatment of knee joint disorders.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 by the authors. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | knee exoskeleton; series elastic actuator; robot-assisted therapies; stroke rehabilitation; knee joint disorders |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Biomedical Sciences (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Robotics, Autonomous Systems & Sensing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Feb 2025 15:13 |
Last Modified: | 14 Feb 2025 15:13 |
Status: | Published |
Publisher: | MDPI |
Identification Number: | 10.3390/s25010153 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223339 |