Lu, A., Achumu, J.J. and Yang, J. (2024) Study on Naphtha Combustion in HCCI Engines. International Journal of Automotive Manufacturing and Materials (IJAMM), 3 (4).
Abstract
The chemical kinetics model studies have been conducted in this paper to assess ignition characteristics of coal-based naphtha (with carbon range C3–C10, RON of 54) for use in advanced engines. Reactivity of coal-based naphtha (CBN) was compared with two surrogate models: PRF54 (46 mole% n-heptane/54 mole% iso-octane) model and 3-component (42.561 mole% NC7H16, 43.683 mole% IC8H18 and 13.756 mole% IC6H14) model. Both two models reasonably predicted the ignition delay times (IDTs) of CBN at 10, 15 bar and 640–900 K. In addition, the experimental and simulation study of coal-based naphtha HCCI combustion was carried out. CHEMKIN-PRO software was used to simulate the effects of intake temperature (Tin) and equivalent ratio (Φ) on the combustion process of naphtha HCCI engine. The results show that the combustion of coal-based naphtha HCCI is sensitive to the Tin. With the increase of Tin, the combustion phase of HCCI is obviously advanced, the concentration of OH and HO2 increases in the middle and low temperature reaction process, and the corresponding curve moves forward as a whole. The change of Φ has little effect on the concentration of OH and HO2 before ignition, and the change of ignition time with the mixture concentration is not obvious. It should be pointed out that when the Tin is high or mixture is rich, the coal-based naphtha HCCI engine is prone to knock, and the peak phase will appear before top dead center (TDC). This phenomenon is especially obvious when the Tin is very high. It can be seen that the coal-based naphtha is suitable for low-temperature lean combustion.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 by the authors. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | coal-based naphtha; HCCI; chemical kinetics; Ignition delay time; engine modelling |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Thermofluids, Surfaces & Interfaces (iETSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 18 Dec 2024 10:17 |
Last Modified: | 18 Dec 2024 10:17 |
Status: | Published |
Publisher: | Scilight Press |
Identification Number: | 10.53941/ijamm.2024.100021 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:220952 |